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A B S T R A C T

This paper investigates a novel real-time stochastic multi-period management strategy of a virtual power plant
(VPP) using a three-layer language protocol based on computer program compiler principle, which takes ad-
vantage of the availability of the battery storage in a VPP to maximize the revenue of the VPP over the entire
trading horizon considering the predicted prices in each slice of that horizon. When the conventional scenario
tree method is used to solve the computational complexity of the multi-period stochastic optimization problem,
it may cause the problem to become intractable when the problem-scale increases. This paper proposes a de-
terministic lookahead approach that makes use of a novel formal language that implements a special formal
grammar to manage the real-time control on the battery storages of the VPP. The control of charging/dis-
charging of the battery storages, which is driven by the real-time spot price and the rolling price prediction, is
formalized by using the proposed recursive grammar and the corresponding non-deterministic finite automaton
(NFA). For validation, the proposed approach is applied to a simple three-bus and an adapted IEEE 14-bus test
system. The simulation results show that the proposed method can obtain optimal revenue by managing each
battery in the VPP to operate as a local generator, a local load, an energy buyer, an energy seller, or by being in
an idle state when the battery is full or empty.

1. Introduction

The distributed energy resources (DERs), such as the small-scale
renewable energy resources (RES) and the energy storage system in the
form of a Battery Energy Storage System (BESS) [1], can be aggregated
to form a Virtual Power Plant (VPP) [2] and belong to an aggregator
that can buy and sell electricity from and to the market as one big or-
ganization. In this paper, it is assumed that each VPP must have at least
one BESS, and the power trading can be processed in a grid-connected
environment via a wholesale market (WM).

The aggregated DERs as a VPP then communicates to the VPP
control centre (VCC) the information on the available DERS in the VPP,
such as their available active and reactive powers, their capacities and
their operating parameters. At the same time, the VCC receives the
information of the marginal cost of generation [3], the current values of
system loads and their future prediction from the grid and the VCC also
receives the spot price of the electricity and its future prediction from
the WM. Based on the information that the VCC receives, the VCC sends
the most optimum schedules of the BESSs in the DERs to the VPP at

each time instance to minimize the cost and to maintain the generation
and load balance. The VCC then decides on the amount of energy to buy
or sell (dependent on the available capacity and energy in each com-
ponent in VPP) and sends the WM the contracts and the offers to buy
and sell electricity.

Fig. 1(a) shows a simplified power grid initially used in this paper,
where the DERs are aggregated as the VPP, and how the VPP are
physically connected to a simplified grid at two nodes. Fig. 1(b) shows
symbolically how the VPP communicates with the VCC and the grid.

The VCC uses the Stochastic Optimization (SO) [4,5] method to
achieve the maximum revenue over a time-span. The main challenge to
solve such a SO problem [4] is to find an optimal lookahead plan (i.e.,
predictive control) among all possible-state trajectories, considering the
uncertainties in the prediction and the contingencies in the grid. In each
time slice, the VCC controls the charging/discharging of the battery
storages by responding to the real-time spot price, while referring to the
rolling price prediction; secondly, the information of the marginal cost
of generation needs to be updated corresponding to the instant actions
of the battery storages.
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There is a vast literature in sequential SO-methods, such as the
Markov Decision Processes (MDPs) [5], the backward dynamic pro-
gramming algorithm (BDPA) [6], the economic model predictive con-
trol (EMPC) [7], etc., that proposes to blend modelling with the design
of lookahead control laws (i.e. policies) [4]. When using the scenario
tree approach, that considers all possible-state trajectories, the looka-
head control law must determine all uncertainties for an optimal sce-
nario (i.e. the optimal lookahead plan). However, these SO-methods
may become computationally intractable when the problem-scale in-
creases. For a better universal and efficient sequential SO-method, the
modelling needs to be separated from the design of the policies [4,5].

According to the compiler principle [8,9] used in computer science,
a programming language is used as the formal language to perform
various kinds of tasks and is programmed in the software level (i.e., the
universal abstraction level) and the corresponding instruction flow (in
which each instruction belongs the finite instruction set) is then exe-
cuted in the hardware level (i.e., machine language level).

This motivates us to develop a three-layer model to solve the se-
quential SO problem to tackle the real-time control of charging/dis-
charging of the battery storages: 1) the finite control-symbol set layer
(i.e., machine language level), where the purpose of this layer is to
create a set of control symbols and define the semantic meaning for
each control symbol by quantifying each control symbol with a corre-
sponding charging/discharging rate and cost of the given BESS; 2) the
formal grammar layer, where the purpose of this layer is to define the
syntax for the formal language [9], i.e., to provide a set of regular ex-
pressions to form all correct combinations based on the finite control

symbol set, furthermore, a corresponding non-deterministic finite au-
tomaton (NFA) [9,10] can be constructed to recognize all these regular
expressions (i.e., the given formal language); and 3) the language
generation layer (i.e., the software level), where the purpose of this
layer is to discover the real-time profitable pattern from the spot price
and its rolling prediction (i.e., the linguistic sources to produce the
defined language) by using an intelligent algorithm (e.g., an extraneous
learning algorithm) and to translate the found pattern into a sequence
of control symbols (i.e., a sample of the given language) to drive the
BESS.

Due to the continuous charging or discharging actions of the battery
storages, the grid power balance based on OPF [11,12] needs to be
updated in time corresponding to every operation of the battery
storages [13,14]. The proposed OPF formulation is given in Section 2.2.

From the discussion above, this paper proposes a novel real-time
stochastic multi-period management strategy of a virtual power plant
(VPP) using the proposed three-layer language protocol to simulta-
neously (i) minimize the operation cost of a smart grid containing
distributed generation energy storage using the multi-period OPF
taking into account not only the network and generator constraints but
also the interaction with the WM, and (ii) maximize the profit when the
VPP is operating in the electricity market, where each sub-problem is
solved dynamically considering a global planning and real-time re-
sponse to the real-time market data. Initially, the global planning pro-
blem is decomposed into several real-time sub-problem sets. In each
time slice, having obtained the global prediction of the power price
from the market, the difference between the real-time price and the
local operational cost is used to guide the operation of the storage to be:
(i) a local generator, (ii) a local load, (iii) an energy buyer, (iv) an
energy seller or (v) an energy hoarding pool. Hence, the supply and
demand of the current sub-problem are affected by the local operational
cost, the real-time market price and its future prediction. To achieve a
rapid and robust control strategy, several control symbols (associated
with the charging and discharging of the BESS) with a recursive defi-
nition are fuzzified dynamically based on each 5-minute forecasted
price in a 24-hour period from the WM. A corresponding non-de-
terministic finite automaton (NFA) is designed to translate the in-
structions in the control symbols from the VCC into special actions for
the operation of the BESS. The optimization tools, e.g. OPF in
MatPower and the buy-low-sell-high strategy are adopted to achieve the
optimum real-time response to the real-time market data.

Nomenclature

Rt : The amount of energy in the battery at time t (MW)
Rj

t : The amount of energy in the j-th battery at t (MW)
Rj

max : The maximum capacity of the j-th battery (MWh)
R :j

min The discharging infimum of the j-th battery. (MWh)
Rt: Total energy increment of all batteries at time t (MW)
Rj

t : The energy increment of the j-th battery time t (MW)
j
High: Charging/discharging high rate of the j-th battery (MW)

j
Norm: Charging/discharging normal rate of the j-th battery (MW)

j
Safe: Charging/discharging safe rate of the j-th battery (MW)

Cj
High: Cost coefficient in high rate for the j-th battery ($/MWh)

Cj
Norm: Cost coefficient in normal rate for the j-th battery

($/MWh)
Cj

Safe: Cost coefficient in safe rate for the j-th battery ($/MWh).
N t : The renewable energy available at time t (MW)
Pt : The price of electricity in the market at timet ($/MWh)
T : Number of time steps in the dispatch horizon
P̄T : The mean value for Pt over time span T ($/MWh)

T : The standard deviation for Pt over time span T ($/MWh)
Dt : The aggregate energy demand at time t (MW)

Costt , Costs t, : The marginal costs of OPF in the grid without battery
and with battery at t respectively ($)

Costt : Cost difference between Costs t, and Costtat time t ($)
losst: The line loss in system without battery at time t (MW)
losss t, : The line loss in system with battery at time t (MW)
PG PG, :i

t
s i
t
, The active power generations by the i-th generator in a
micro-grid without batteries and with batteries at time t
respectively (MW)

PSc j
t
, : The charging amount of the j-th battery at t (MW)

PSd j
t
, : The active output of the j-th battery discharging as a

temporary generator at t (MW)
c c c, , :G G G

2 1 0
i i i Quadratic, linear and constant terms of the i-th generator

cost coefficients
Ng: Number of conventional generators
S: Set of all nodes connected with BESSs

t1, : Boolean control variable: energy for self-use in the micro-
grid (=1) or for exchanging with the energy market (=0)

t2, : Boolean variable to charge (=1) or to discharge (=0)
Proft

sell: The profit to sell energy on market at t ($)
Costt

buy: The cost to buy energy from market at t ($)

(a) (b)
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Fig. 1. The Model of Controlling VPP: (a) The Topology of the Decentralized
Dispatch with VPP (located at two nodes in the power grid), (b) Communication
Scenario.
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The contributions of this paper are:

1) The development of a novel real-time stochastic multi-period man-
agement strategy of a virtual power plant (VPP) using a three-layer
language protocol to solve the sequential SO problem to control in
real time the charging/discharging of the battery storages;

2) The formalization of the mapping of the BESS charging and dis-
charging with the forecasted prices into several finite states and fi-
nite intervals respectively to reduce the large possible states of the
stochastic optimization, and to ensure the strict feasibility of the
optimal trajectory;

3) The formalization of the non-deterministic finite automaton (NFA)
that includes BESS, the instant spot price and the price prediction, to
implement a recursive and convenient algorithm for spot price
trading and the tariff arbitrage over a time-span;

4) The determination of the timing and the amount of the charging or
discharging of the BESS by the intelligence of the VCC to provide the
energy buffer to the intermittent and fluctuating sources as it re-
ceives the variation of the electricity market price;

5) The inclusion of a dynamic OPF model that can ensure the balance
between the generation and the load plus losses, the guarantee that
the constraints in the power system can be met and the optimization
of the operation cost of the grid and the VPP.

The rest of the paper is organized as follows. Section 2 outlines the
proposed problem in a mathematical manner. The proposed approach is
described in Section 3. In Section 4, the simulation results and analysis
are presented. Finally, in Section 5, the conclusion and future work are
provided.

2. Basic backgrounds and problem formulation

The first test system used in this paper is shown in Fig. 1(a) and the
received and the sending communications of the VCC is shown in
Fig. 1(b). Fig. 1(a) shows a grid with n buses consisting of Ng con-
ventional generation (PGi

t), and load demand (Dt) and a VPP with re-
newables (N t) and BESS (Rt). In the proposed VPP arrangement, the
grid can purchase or sell power to the VPP based on the determination
made by the VCC depending on the current spot price and its future
prediction to maximise profits for the VPP and to minimize the gen-
eration cost of the grid.

2.1. Traditional multi-period OPF

(1) gives a common quadratic cost function for a conventional
generator and (1a) defines the total optimal generation cost at time t.

= + +f PG c PG c PG c( ) ( )i
t

G i
t

G i
t

G
2 2 1 0

i i i (1)

=
=

Cost Minimize f PG( ( ))t i

Ng
i
t

1 (1a)

=
=

CostReference Cost
t

T
t1 (1b)

Both (1) and (1a) are subject to:

= +
=

PG D loss i Ng, [1, ]
i

Ng
i
t t

t1 (1c)

PG PG PG i Ng, [1, ]min i i
t

max i, , (1d)

QG QG QG i Ng, [1, ]min i i
t

max i, , (1e)

V V V k n, [1, ]min k k
t

max k, , (1f)

2.2. The proposed multi-period OPF with VPP

This case includes such factors as renewables (N t), BESS (Rt) and

energy transaction to the traditional OPF. Hence, (1a) and (1b) can be
revised to (2) and (2a).

= +
= =

Cost Minimize f PG f PS[ ( ) ( )]s t i

Ng
s i
t

t j

S
d j
t

, 1 , 1, 1 , (2)

where f PG( )s i
t
, and f PS( )d j

t
, now includes the impact of having S num-

bers of BESSs either charging or discharging. (1c) can now rewritten as
(2a) be subject to (1d), (1e), (1f):

+ = + +
=

PG N D loss R
i

Ng
s i
t t t

s t t
t

1 , , 1, (2a)

(2a) ensures that the generation by all generation (including re-
newables and batteries) is balanced by the load and losses.

The proposed method can be described in two steps: First, based on
the instant price and the prediction, a real-time synchronized move-
ment for all BESSs are decided, either to charge or to discharge.

=
>

if P P charging
if P P discharging

1, ¯ ,
0, ¯ ,t

t T

t T2,
(2b)

(2b) determines whether the battery is charging or discharging, ,t2,
based on the comparison of the current price, (P )t , and the average
price, (P̄T).

= =
=
=

R R R
PS if charging
PS if discharging

j S
, 1,
, 0,

, (1 )j
t

j
t

j
t c j

t
t

d j
t

t

1 , 2,

, 2, (2c)

(2c) determines the individual battery energy available ( R )j
t for

charging or discharging:

=
=

=
=

=

R
R if charging

R if discharging

| |, 1,

| |, 0,
t j

S
j
t

t

j
S

j
t

t

1 2,

1 2, (2d)

(2d) determines the total battery energy available ( Rt) for charging
or discharging.

The profit and cost can be calculated from (2g) and (2h).

= +
= =

temp Cost f PG f PS[ ( ) ( )]t i

Ng
s i
t

j

S
d j
t

1 , 1 , (2e)

(2e) shows the difference,temp, between the reference cost and the
total cost of the battery energy whether charging or discharging.

=

=
> =

=
> =

if temp P R and
if temp P R and
if temp P R and
if temp P R and

0, (| | | |) 0 0
1, (| | | |) 0 0
1, (| | | |) 0 1
0, (| | | |) 0 1

t

t t
t

t t
t

t t
t

t t
t

1,

2,

2,

2,

2, (2f)

(2f) uses temp to decide on the purposes of batteries for charging
and discharging as shown in Table 1, e.g., to obtain profit, the batteries
are discharged either as energy sellers ( = 0t2, and ) or as temporary
generators ( = 0t2, and = 1t1, ); similarly the batteries are charged
either as energy buyers ( = 1t2, and = 0t1, ) or as temporary loads
( = 1t2, and = 1t1, ). When the batteries are used as energy buyers or
energy sellers, the energies are bought or sold to the market and will
therefore not affect the local grid, however when the batteries are used
as temporary generators or temporary loads, the energies must be
supplied or drawn from the local grid.

Table 1
Energy Storage Working Character in Different Situations.

= 0t1, = 1t1,

= 0t2, Energy Seller Temporary Generator
= 1t2, Energy Buyer Temporary Load
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=
= =
= =

Prof
P R if and

if and
| |, 0 0

0, 1 0t
sell

t t
t t

t t

2, 1,

2, 1, (2g)

Eq. (2g) determines the profit based on the decision of the use of the
batteries as energy sellers.

=
= =
= =

Cost
if and

P R if and
0, 0 0

| |, 1 0t
buy t t

t t
t t

2, 1,

2, 1, (2h)

Eq. (2h) determines the cost based on the decision of the use of the
batteries as energy buyers.

2.3. Optimization objects

There are two main objectives in this paper: one is to maximize the
revenue of VPP over T[1, ] on the market, which can be described as (3)

=
=

Market Revenue Maximize Prof Cost( )
t

T
t
sell

t
buy

1 (3)

The other is to minimize the operational cost of the grid over T[1, ]
based on (4),

=
=

Total Cost Minimize Cost
t

T
s t1 , (4)

In addition, some auxiliary definitions are given as follows,

=Cost Cost Costt t s t, (5)

where Costt represents the contribution of VPP on the reference cost at
time slice t.

The total revenue over [1,T] can be expressed as (5a),

= +
=

Total revenue Market Revenue Maximize Cost( )
t

T
t1 (5a)

The real cost over T[1, ] can be expressed as (5a),

=Real Cost Reference cost Total revenue (5b)

3. Data-driven deterministic lookahead approach

In the proposed strategy, each BESS in VPP must not only consider
the optimality of the energy self-use for the local grid but also pursue to
obtain more revenue, which are triggered by the information extracted
from the real-time price data in each single period.

3.1. The finite control-symbol set of BESS

The dynamic decision for charging or discharging is to use ‘buy low
and sell high’ strategy [15], causing the control actions to respond to
the real time price to benefit over a time span rather than a single-time
point. A precise prediction [16] and regular updating based on histor-
ical data is necessary [17].

Based on the prediction, the forecasted price (e.g., each 24-h pre-
diction can be divided into four levels from bottom to top: there are
lower price area, =P C P P P{ | ¯ }t t t T T

2 , low price area,
= <P C P P P P{ | ¯ ¯ }t t T T t T

1 , high price area,
= < +P D P P P P{ | ¯ ¯ }t t T t T T

1 , and higher price area,
= +P D P P P{ | ¯ }t t T T t

2 , respectively as shown Fig. 2.
When Pt is within C1 or C2 area, it is preferable to charge the BESS

and hoard the energy, rather than using the energy of the BESS to
supply the load, with the intention of selling the stored energy to the
market when the price Pt is within the D1 or D2 area to obtain profit.
Moreover, when the price is in C2, the battery will be charged at a
higher charging rate to store more energy with the expectation of
selling more energy in D2 to generate more revenue. In general, the
proposed strategy is to maximize the sum of all the differences over
time interval T[1, ], as shown in (5), to optimize the profit and to
promote the effective use of the local energy sources and the BESS.

3.1.1. Dynamic charging/discharging rate
When the state of charge (SoC) exceeds the upper or lower limit

(e.g., in this paper the range is set between 10% and 90%) of the SoC of
the battery, the discharging rate should be reduced to extend the time
that the battery is available when the SoC is between 10% and 20%,
and similarly the charging rate should be reduced to extend the time
that the storage is available when the SoC is between 80% and 90%.

The control logic in Table 2 is adopted to explain the idea of the
dynamic charging and discharging rate. For example, when the current
price is above the mean mark shown in Fig. 2, the storages should be
discharging at the highest charging rate j

High when P Dt
2 or at their

normal rate j
Norm when P Dt

1. Their cost rates are Cj
High and Cj

Norm

respectively. Further, when the SoC is over or below the upper or lower
limit, no further charging or discharging is allowed.

The algorithm in Fig. 3(a) provides the working details while dis-
charging and the one shown in Fig. 3(b) explains the charging proces-
sing.

3.1.2. The formal grammar for the data-driven control
For the real-time data-driven control, it is an important step to

generalize all the dynamic storage-actions by a recursive method. Thus,
a regular grammar [18] is defined in (6)–(6c), which aims to encode the
forecasted price data, in each 24-period, into action-symbols corre-
sponding to the four price levels as shown in Fig. 2.

S TS F| (6)

T CT DT C D| | | (6a)

C C C|1 2 (6b)

D D D|1 2 (6c)

where ‘S’ represents the start symbol (i.e., nonterminal symbol) [8–10]
of the set of finite control symbols (i.e., terminal symbols [8–10] such as
‘C1’, ’C2’, ’D1’, ’D2’ and ‘F ’) for the battery storages. It can be defined
recursively as a sub-symbol group ‘T ’ followed by ‘S’ itself or a final
symbol ‘F ’. As given in (6a), for any ‘T ’, its follow-up symbols may
begin at a charging symbol, ‘C ’, or a discharging one, ‘D’, attached with
a recursive ‘T ’ set. (6b) and (6c) mean the symbol ‘C ’ or ‘D’ may de-
compose further into its terminal symbols for more precise actions, e.g.,
‘C1’, ’C2’, ’D1’, ’D2’ as shown in Fig. 2.

Then, the language based on the grammar given in (6)–(6c), (i.e., all
strings only consist of terminal symbols and are derived from the start
symbol, S), is an infinite set, and as shown in (6d),

=C C D D F i i i i i or{( ) | 1, 2, 3, 4 0& 0 1}i i i i i
1

1
2

2
1

3
2

4 (6d)

where C i
1

1 is ‘C1’ repeated i1 times, and so on, the operator ‘*’ represents
the Kleene closure [9], which means ‘zero or more’.

For example, the string ‘C C D F2 2 1 ’ can be derived by starting with ‘S’
with a series of substituting of the regular expressions among (6)–(6c).
The deriving process can be expressed briefly by using symbols:

S TS CTS
a(6) (6 )

C TS C CTS
b a(6 )

2
(6 )

2 C C TS
b(6 )

2 2 C C DS
a c(6 )

2 2
(6 )

C C D S2 2 1
(6)

C C D F2 2 1 .
Hence, via the grammar, the successive real-time price data can be

translated into a series of instructions sent from the VCC to the

Fig. 2. Predicted Price Curve in 4 levels.
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distributed battery storages (i.e., a programmed sequence of instruc-
tions). That is, the instruction sequence is a string pattern consisting of
such control symbols as ‘C1’,’C2’,’D1’,’D2’ and ended with the symbol ‘F ’.
For example, suppose the real-time price is =P $49/MWht , based on
the prediction over the whole time span (assume the average price is

=P̄ $55/MWhT and the standard deviation is = 10T ), the battery
storage must receive a control symbol, ‘C1’ (i.e.,P̄T T < 49 < P̄T),
rather than a number, ‘49′; Assume the battery storage receives a
control-symbol string like ‘C D D D1 1 2 1…’, it can be decoded directly to a

set of storage actions, i.e., charging, discharging, fast discharging, dis-
charging… If necessary, the noise interference around P̄T , T and the
dynamic update on the prediction may be considered, but this will be
out of the scope of the paper, and therefore is not considered here.

3.2. State transition of BESS

On the BESS side, corresponding to the recursive definition for the
control symbols, the dynamic energy volume of each battery storage
can also be reflected by a serial sequence consisting of finite states:
charging state,Sc, discharging state,S ,d empty state, SE , and full state, SF )
rather than the conventional approaches that consider every possible
continuous state, which can often cause the computational complexity
to become intractable.

The whole state transition procedure is shown in Fig. 4 and is a non-
deterministic finite automaton (NFA) in accordance to the regular
grammar (in Section 3.1.2), which is easier to implement by software or
hardware and is defined as follows,

Definition. a 5-tuple =M Q q F( , , , , )0 , consisting of: a finite set of
states =Q S S S S{ , , , }c d E F ; a finite set of input symbols

= C C D D{ , , , , }1 2 1 2 , is an empty symbol; a start state q Q0 ; a set
of accept states F Q; a transition function, : ×Q Q, is defined
by Table 3.

In Fig. 4, C' ' may be substituted by one control symbol, eitherC1 or
C2, just as defined in (6c), similarly, D' ' appears as D1or D2. When re-
ceiving a charging/discharging instruction ‘C ’ or ‘D’ (as shown in the
first row of Table 3) at time slice t, a battery needs a state-transfer from
its current state (the most left column in Table 3) into its next state
based on the state transition rule listed in Table 3. Corresponding to the
new state of the battery, the energy of the battery needs updating fol-
lowing the rules given in (7).
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j
t

j
max

1

1

1
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1
(7)

where the first expression and the last one in (7) respectively corre-
spond to two idle situations of batteries when the energy is not
changed. As shown in Fig. 4, one idle situation is at the maximum

Table 2
BESS Operating Logic Based on Data-Driven.

Conditions Charging Rate&
Unit Cost

Discharging Rate &
Unit Cost

R R R[0.8 , 0.9j
t

j
max

j
max] P Dt 2 – C&j

High
j
High

P Dt 1 – C&j
Norm

j
Norm

P Ct 1 C&j
Safe

j
Safe –

P Ct 2 C&j
Safe

j
Safe –

R R R[0.1 , 0.2 ]j
t

j
max

j
max P Dt 2 – C&j

Safe
j
Safe

P Dt 1 – C&j
Safe

j
Safe

P Ct 1 C&j
Norm

j
Norm

P Ct 2 C&j
High

j
High

R R R[0.2 , 0.8 ]j
t

j
max

j
max P Dt 2 – C&j

High
j
High

P Dt 1 – C&j
Norm

j
Norm

P Ct 1 C&j
Norm

j
Norm –

P Ct 2 C&j
High

j
High –

Fig. 3. Preparation for real-time charging or discharging (a) Discharging
amount strategy, (b) Charging amount strategy.

Fig. 4. Storage State diagram for Dynamic Transition.

Table 3
Battery State Transition Rule for Programming.

C1 C2 D1 D2

SE Sc Sc SE SE SE
Sc S S{ , }c F S S{ , }c F Sd Sd Sc
Sd Sc Sc S S{ , }d E S S{ , }d E Sd
S S{ , }c F SF SF Sd Sd S S{ , }c F
S S{ , }d E Sc Sc SE SE S S{ , }d E

SF SF SF Sd Sd SF
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energy state SF while receiving continuous charging-instructions, the
other is at the minimum energy state SE while receiving continuous
discharging-instructions. Otherwise, at time slice t , when the jth battery
transfers into a new charging state Sc, its hoarding energy should be
updated by = ++R R Rj

t
j
t

j
t1 ,or by =+R R R orPS( )j

t
j
t

j
t

d j
t1
, in the dis-

charging state Sd., where Rj
t and PSd j

t
, are determined by using the

methods as shown in Fig. 3.

3.3. Dynamic use of BESS

So far, the VCC at time t has decided whether to charge or discharge
and how much energy can be used in charging or discharging.

However, the BESS in this paper not only plays as a storage but also
as an energy router [19]. The distributed energy resources (DERs) are
connected to local electrical grids and controlled by cloud technologies
[20] (the details are out of the scope of this paper). When the local
supply exceeds the local demand, the surplus energy can be stored into
the BESS. When the energy price is profitable, the BESS can discharge
energy into the grid or buy energy from the grid for charging (i.e., inter-
regional trading). At the time of local energy deficit, the BESS provides
the insufficient amount of energy (i.e. compensating as local supply).
Thus, the operation of the battery storages can be: (i) a local generator,
(ii) a local load, (iii) an energy buyer, (iv) an energy seller, or (v) an idle
state. Before making the decision about the mode of operation it should
be, an auxiliary calculation, via a traditional OPF method shown in
Section 2.2 (1)-(1f) (e.g. Newton-Raphson method), is adopted here and
the details are shown in Fig. 5 and discussed below:

1) For the charging case of the BESS as a local load or energy buyer:
The real charging amount for each battery can be obtained using the
pseudo code as given in Fig. 5(a).

2) For the discharging case of the BESS as a local generator

or an energy seller: the storage plays as a temporary generator to
contribute Rt energy in total to the local grid, or an energy seller to sell
the same quantity of energy to the market for profit, the discharging
amount has given in Fig. 5(b).

Fig. 5 (c) shows the pseudocode of the main control procedure
running on the VCC side. In the initialization (the 1st step), the para-
meters of the three-layer model are prepared respectively: the finite
control-symbol set layer (the hardware level), the formal grammar
layer and the language generation layer (the software level or pro-
gramming layer). In the 3rd step, VCC samples the continuous price
signal at regular time intervals (e.g. per 5-min or 30-min) and translates
the samples to a sequential of control symbols by using the formal
grammar in Section 3.1.2, then triggers the NFA to change the state of
the BESS by sending the instruction (i.e., the control symbol) to the
BESS.

4. Simulation results and analysis

In this part, two benchmark systems are adopted to illustrate the
proposed strategy. The first case is shown in Fig. 6 adapted from the
Tutorial Example System in [21]; the second one is shown in Fig. 7,
which is the IEEE 14-bus system adapted from [22].

4.1. The 3-bus system

Fig. 6 shows the test system with two identical 200 MW generators
located at Bus 1 with different reserve costs denoted as Gen1 and Gen2,
and one 500 MW generator at Bus 2 denoted as Gen3. Only the linear
coefficient are used in Eq. (1), whose values are set as:

=cG
1

1 75, =c 90G
1

2 , =c 120G
1

3 , and the rest of the variables (the quadratic
coefficients (cG

2
1 ,cG

2
2 ,cG

2
3 ) and the constants (cG

0
1 ,cG

0
2 ,cG

0
3 ) are set as 0. The

battery storage system at bus 3 is a 200 MWh unit with 80 MW max
charging/discharging rate as used in [21]. The price data and the load

demand is scaled down from the historical data from September to
October from the AEMO website [17].

The values of the variables mentioned in Table 2 are:

Fig. 5. The data-driven control algorithm used in VCC: (a) Charging source
control, (b) Discharging purpose control, (c) The main control procedure.
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=R 200 MWhj
max , = 80 MWj

High , and = 40 MWj
Norm ,

= 10 MWj
Safe , and the cost rates Cj

High, Cj
Normand Cj

Safe, are $9/MWh,
$5/MWh and $1/MWh respectively. The wind generator at Bus 2
(whose maximum output is 100 MW) is set as a stochastic case, where
the output value is randomly varied at each time slice from 0 to
100 MW. The wind data (N t), the system load (D )t and the market price
data (P )t , are listed in the left three columns in Table 4. The output of
the wind generator is treated as a negative load at bus 2. The branch
limits are set to be 300 MW for line 1–2, 240 MW for line 1–3 and
300 MW for line 2–3. From the price data in Table 4, the average
market price over one day, P̄T , is $139.87 (based on which the decision

of charging and discharging can be made as given in (2b), and the
standard deviation T is $27.97 (based on which the four levels of the
price curve as shown in Fig. 2 can be obtained).

First, a conventional OPF is carried out by considering only the
three conventional generators plus the wind generator over a 12-time
interval. Second, the battery storage system with an initial energy of
40 MW is added.

Initially, the battery is driven by a very simple control instruction,
whether the batteries should be a temporary load or a temporary gen-
erator, and the battery can be fully charged or empty. The comparison
of the results between the two cases is shown in Table 4. When Rj

t is
negative, it represents the discharging action of the battery storage,
which supplies energy to the grid, and hence the battery storage acts a
generator; and when it is positive, it represents the charging action of
the battery storage, which draws energy from the grid and hence the
battery storage acts as a load. The cumulative loss/benefit ends with a
positive value that means the use of the battery storage system in the
12-time periods, has produced an economical benefit ( = Costt

T
t1 ) of

$2386.69, and the real cost is $261311.80, as shown in the Table 4.
The simulation is then carried our using the proposed strategy by

considering the impact of buying and selling to WM given in (2f), where
the battery can be working in different capacity during charging and
discharging as given in Table 1, and the working logic of the batteries is
as given in Table 2. Table 5 shows the one-day (1st row), one-week (2nd
row) and 4-week (3rd row) results respectively.

The first column, CostT
t1 , as given in (1b), represents the reference

cost (without batteries and trade) over [1, T]; and, the second column,
CostT

s t1 , , calculated using (4), is the total optimized generation cost of
the system equipped with the batteries and trade; the third column is
the revenue obtained by selling energy to the market, and the fourth is
the expenditure incurred to buy the energy from the market when the
price is low. The last column shows the real cost, calculated using (5b),
and when this is compared with the reference cost in the first column, it
shows that the real cost using the proposed strategy is much less than
the reference cost. If more BESS and renewable generators are added, a
much less total real cost can be achieved.

4.2. Revised IEEE 14-bus system

In this subsection, the computations described in Section 4.1 are
repeated for the adapted IEEE 14-bus system as shown in Fig. 7.

In this system, three load buses, bus 11, bus 12 and bus 13, are
equipped with the batteries of the same type as given in Section 4.1.
The cost parameters of all the generators are tripled from the standard
version in the 14-bus system to estimate all the practical costs of the
grid. To determine the reference cost, the total costs of generation from
all generators without the batteries are calculated using OPF (Cost )t .

Load 

Bus 3 

Bus 1 
Bus 2 

Battery 

Generator

Sell out

Buy in 
Market 

VPP 

Fig. 6. A 3-bus test system with market and Battery [21].

Fig. 7. The IEEE 14 bus system adapted from [22].

Table 4
Economical comparison between the 3-bus System with battery and the case without battery over 12-time-slice.

Time Slice Data The system without battery The system with battery Statistical results

NtMW DtMW Pt$/MWh = PGi i
t

1
3 MW losstMW Costt $ = PGi s i

t
1

3
, MW losss t, MW Rj

tMW Rj
tMW Costs t, $ Costt $ CostT

t1 ($)

1 88 378 119.98 293.40 3.36 25680.09 334.21 4.17 40 80 28879.12 −3199.02 263,698.49
2 81 345 113.45 266.92 2.78 23694.32 307.66 3.52 40 120 26749.48 −3055.15
3 84 324 109.76 242.78 2.43 21883.54 303.84 3.49 60 180 26462.75 −4579.20 CostT

s t1 ,
4 114 308 107.84 196.22 2.19 18391.23 206.36 2.33 10 190 19151.71 −760.49
5 140 300 110.10 181.72 2.44 17278.76 183.14 2.75 10 200 17396.25 −117.49 261,311.80
6 118 303 108.61 187.41 2.14 17731.06 187.41 2.14 0 200 17731.06 0
7 100 309 106.80 210.86 2.19 19489.26 210.86 2.19 0 200 19489.26 0 ProfT

t
sell

1
8 137 336 116.32 201.43 2.62 18782.14 201.43 2.62 0 200 18782.14 0 0
9 154 365 131.71 213.88 3.10 19716.00 213.88 3.10 0 200 19716.00 0 CostT

t
buy

1
10 166 409 152.87 246.78 3.88 22183.43 206.09 3.19 −40 160 19331.91 2851.53 0
11 164 460 253.43 301.26 4.91 26269.87 219.72 3.37 −80 80 20874.35 5395.52 Real Cost $
12 155 495 150.34 345.91 5.75 32598.77 304.97 4.81 −40 40 26747.77 5851.00 261,311.80
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In each time slice, whether the battery storage should be charging is
decided based on the current price compared to the average price as
given in (2b), from which the contribution from each battery can be
calculated from (2c) can be obtained. Fig. 8 shows the one-day price
data sampled every 30 mins and its average price, and the four levels of
the price curve based on the standard deviation. The price stream can
be encoded into a consecutive control-signal string consisting of
‘D2’,’D1’,’C1’,’C2’ at the VCC side, and it can be decoded into a serial
battery action on the battery side.

The reference cost (Cost )t in each time slice is used to determine how
the battery are used for charging and discharging as shown in Table 1
based on (2e) and (2f).

Fig. 9(a) shows the comparison between the total load demands of
buses 11–13 (where the batteries are located) in IEEE 14 bus system
with and without the batteries and energy trade. Whenever the bat-
teries are being charged, it becomes an extra load (time slice 14, 16,
22–26, 35, 46) and therefore increases the load demand at that bus.
Some of these changes are very small but will be more evident when
their costs are calculated. Fig. 9(b) - (d) show the effect of the batteries
and the energy trade on the output of the generators of bus 2, bus 6, and

Table 5
Operational Costs Comparison on one day, 7 and 28 days by the 3-bus system as given in the Fig. 6.

CostT
t1 (103$) CostT

s t1 , (103$) ProfT
t
sell

1 (103$) CostT
t
buy

1 (103$) Real Cost (103$)

1 1749.61 1755.21 63.23 366.15 1728.60
2 10411.10 10502.33 409.15 245.21 10338.39
3 43602.00 43281.91 1024.76 1206.13 43463.28

Fig. 8. 24-hour price data sampling per 30 mins.

(a) (b)

(c) (d)

Fig. 9. Comparison on the dynamic loads and real power outputs in the IEEE revised Case 14 over 1-day data: (a) Dynamic loads on buses 11–13, (b) Dynamic real
power output on bus2, (c) Dynamic real power output on bus6, (d) Dynamic real power output on bus8.
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bus 8 (bus 1 is the slack node of the system). Fig. 9(b) shows that the
generator of bus 2 reduces its output whenever the batteries are being
charged (the load demands increase), as shown in Fig. 9(a). Because the
cost of generation of this generator is the highest of all the generators, it
will be used least to balance the generation and the load. Fig. 9(c) and
(d) shows that the generation of the other two generators in bus 6 and
bus 8, which are cheaper than the generator of bus 2. As expected, these
two generators carry more impact to balance the generation and the
load, as the load is increased due to the charging of the battery as
shown in Fig. 9(a). These additional loads also affect the corresponding
real power outputs of all other generators. The amounts of these ad-
ditional loads also depend on whether the batteries are used as energy
buyers or temporary loads as shown in Table 2

Fig. 10(a) shows the dynamic actions of the battery on bus 11 driven
by the spot price shown by the red line based on (2f) and Table 1. In the
blue bar graph, the parts above the line represent discharging, and the
parts below the line represent charging.

In Fig. 10(b), the deep blue bar graph dynamically records the state-
of-charge (SoC) of all the batteries in buses 11–13, which increases
when the batteries are charged and decreases when the batteries are

discharged and are limited with 10% and 90%. The red triangle line
shows the reference load (without batteries and WM).

The purposes of batteries for charging and discharging are defined
by (2f) and Table 1, e.g., to obtain profit, the batteries are discharged
either as energy sellers or as temporary generators; similarly, the bat-
teries can be charged either as energy buyers or as temporary loads.
When the batteries are used as energy buyers or energy sellers to WM,
the energies are bought or sold to the market and will therefore not
affect the local grid, however when the batteries are used as temporary
generators or temporary loads, the energies must be supplied or drawn
from the local grid. These operations will dynamically affect the load
and the generations from other generators.

Fig. 10(b) also shows that depending on whether the batteries are
operating as generators when discharging, or they are operating as
loads when charging, the load demand and the generations in the local
grid are modified as these operations affect the local grid operation. For
example, in time slice 15, the batteries are discharging and based on the
cost comparison in (2f), the batteries are used as local generators to the
local grid, and therefore the total output of all the local generators
drops to meet the load demand due to the additional generation from
the batteries, similarly in time slice 14, when the batteries are used as a
load to the local grid when charging, the total load demand the total
output of the local generator increases, due to the additional load in-
troduced by the batteries.

Fig. 10(b) further shows that depending on whether the batteries
are operating as energy sellers when discharging, or they are operating
as energy buyers when charging, the load demand and the generations
in the local grid are not modified as these operations do not affect the
local grid operation. For example, in time slice 10, the batteries are
discharging and based on the cost comparison in (2f), the batteries are
used as energy sellers to WM, and this operation has no effect on the
local grid loads or generations, similarly in time slice 21, when the
batteries are used as energy buyers to WM when charging, this opera-
tion has no effect on the local grid loads or generations.

Fig. 10(c) shows the reference cost curve,Costt , as a black circle line,
the optimized cost for charging and discharging the batteries, Costs t, , as
given in (2) as a black triangle line, the real cost as given in (5b) and the
profits and the cost of operating the batteries as energy sellers and
energy buyers as given in (2g) and (2h) respectively as a blue triangle
line, profit is shown as negative and cost is shown as positive.

For example, in time slice 15, the batteries are discharging, and
based on (2f), the decision is to operate the batteries as generators, and
hence the total generations from the local generators in the local grid is
reduced resulting in a reducedCosts t, , and reduced real cost and since
there is no energy trading in the market, there is no profit and loss in
trading with the market.

In time slice 10, the batteries are discharging, and based on (2f), the
decision is to operate the batteries as energy sellers, and hence Costs t, is
unchanged and the real cost is reduced because of the revenue in selling
the energy, and there is there is a profit in selling to WM.

In time slice 14, the batteries are charging, and based on (2f), the
decision is to operate the batteries as loads, and hence Costs t, and real
cost are increased and since there is no energy trading in the market,
there is no profit and loss in In time slice 21, the batteries are charging,
and based on (2f), the decision is to operate the batteries as energy
buyers, and hence Costs t, is unchanged and the real cost is increased
because of the cost in buying the energy from WM, and there is there is
additional cost is buying from WM.

In time slice 21, the batteries are charging, and based on (2f), the
decision is to operate the batteries as energy buyers, and hence Costs t, is
unchanged and the real cost is increased because of the cost in buying
the energy from WM, and there is there is additional cost is buying from
WM.

In the 48 time slices (half hour interval), the total Costt is $
3340404.89, the total Costs t, is $3243730.50, the total real cost is
$3230765.05 and the market revenue as defined in Eq. (3) is

0

Fig. 10. Dynamic states of the batteries in the Case study 2: (a) Spot price and
the battery state on bus 11, (b) Dynamic states including the SoC of the total
BESS, the reference load, dynamic real load and the real power output, (c) The
dynamic revenue state.

Table 6
Economical comparison on 7 and 28 days using the proposed method for IEEE
14 bus system.

CostT
t1 ($) CostT

s t1 , ($) ProfT
t
sell

1 ($) CostT
t
buy

1 ($) Real Cost ($)

20,553,251 20,698,442 1,212,662 858,474 20,344,254
83,113,853 81,805,897 5,554,420 4,059,924 80,311,401
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$-12965.45. The total revenue as defined in (5a) is $ 83708.95, which
includes the market revenue and the difference between Costs t, and
Cost .t

The stimulation is further processed on 1-week and 4- week data
and the results are shown 1st and 2nd rows respectively in the Table 6.
The real costs are much lower than the reference cost.

5. Conclusion

For solving the multi-period OPF problem modelled on the BESSs of
VPP and the market impact, this paper proposes a three-layer de-
terministic lookahead approach by formalizing the relationship be-
tween the BESS actions (such as charging and discharging) and the
forecasted price horizon into several finite states and finite price in-
tervals respectively. For this reason, the large possible states in the
stochastic optimization (i.e., the multi-period OPF) has reduced effec-
tively. Then a recursive grammar and a non-deterministic finite auto-
maton (NFA) are designed to implement the price-driven strategy.
According to the location of the current spot price on the forecasted
price horizon, each real-time spot price may transfer the current battery
state into another state. Thus, the strict feasibility of the optimal tra-
jectory among the finite states can be ensured. Accordingly, on the VCC
side, the continuous spot price can be encoded into a consecutive
control symbol string, which can be received and decoded in time on
the battery side to operate the battery as a local generator, a local load,
an energy buyer, an energy seller, or in an idle state. The proposed
method has two main tasks: one is to minimize the operational cost, and
the other is to maximize the profit when the VPP is operating in the
electricity market. Simulation results have revealed that this prototype
is promising for real-time control and it is cost-effective for im-
plementation. Further works are required to enhance the energy effi-
ciency, operation flexibility and economic revenue in the grid-con-
nected environment.
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