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ABSTRACT: This paper presents the planning of solar photovoltaics (PV), battery energy storage 

system (BESS) and gas-fired micro turbine (MT) in a coupled micro gas and electricity grid. The 

proposed model is formulated as a two-stage stochastic optimization problem, including the opti-

mal investment in the first stage and the optimal operation in the second stage. To better under-

stand the mutual interactions between electric and heat energy, the gas network models are taken 

into account. As a result, the fuel availability and price of the gas-fired MT can be explicitly mod-

eled and analyzed. Moreover, to enhance the computational efficiency of the formulated 

mixed-integer quadratic programming problem, the point estimation method is used as the scenar-

io reduction technique. The effectiveness of the proposed model is verified on a 14-bus coupled 

micro energy grid. Based on the case studies, the proposed two-stage planning model can identify 

a planning solution with the objective value of $99.3104, which is comprised of the daily capital 

recovery cost of $20.5070, the daily operating cost of $78.8034 for the coupled micro gas and 

electricity grid. Comparative studies demonstrate that the proposed approach can help the mi-

crogrid operator identify feasible and optimal planning solutions, and provide valuable guidance 

for energy infrastructure expansion from an integrated perspective. 

 

Keywords: Coupled Microgrid, Coordinated System Planning, Controllable Load, Natural Gas 

Systems 

 

1. Introduction 

Although the paradigm of microgrids is originally targeted at electricity grids, this concept 

can be extended to a variety of small-scale energy loads, energy storage devices, and energy sup-

ply resources. To support the integration of renewable energy, the microgrid faces considerable 

investments to install BESS and MT [1]. In a case that a microgrid cannot completely rely on re-
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newable energy, the natural gas grid still plays a critical role in providing power and heat to the 

local area[2], [3]. Hence an electrical microgrid becomes the form of coupled micro energy 

grids[4], [5]. A gas-fired MT is the bridge that couples micro gas and electricity grids at the supply 

side; while dual fuel energy devices increase the interconnection of the energy grids at the demand 

side [2]. Therefore, it is of great significance to address the problem of sizing, sitting of solar PV, 

BESS and gas-fired MT, and investigate the mutual operational impacts of the two grids from an 

integrated perspective [2]. 

In the literature, optimization models have been widely applied to other fields such as precip-

itation analysis and irrigation management [6], [7], [8], [9], [10]. On the other hand, the planning 

of BESS or distributed generation (DG) (renewable or thermal DG) in the energy system planning 

field can be classified to two categories: 1) optimal sizing [11], [12]; 2) optimal allocation (sitting 

and sizing decision) [13], [14]. Meanwhile, depending on whether DG and BESS are simultane-

ously considered in decision-making, the optimal planning can be classified into optimal alloca-

tion of storage or DG [15], [16] and coordinated optimal allocation [17], [18]. Some of the refer-

ences are briefly described here. Ref. [3] presents a mixed-integer linear programming model for 

the optimal sizing, placement and operation of a multi-energy microgrid. The electrical power 

flow and heat transfer equations have been included, and hence the physical and operational con-

straints of electrical and heating/cooling networks can be modeled. Unfortunately, ref. [3] fails to 

model the thermal/cooling energy flows explicitly, and only energy balance constraints are in-

cluded. In the meantime, models of energy storage devices such as BESS and gas linepack are 

completely excluded. Ref. [4] presents the optimal allocation of combined heat and power 

(CHP)-based DG, by introducing an integrated system dispatch model, including electricity, water, 

natural gas network models. The model can effectively investigate the mutual interactions between 

different networks. However, the model in [4] fails to investigate the role of controllable load (CL) 

and energy storage in terms of smoothing renewable energy and enhancing system efficiency. Ref. 

[19] presents a tri-objective design of an off-grid PV/wind/split-diesel/battery hybrid energy sys-

tem, aiming to minimize the lifecycle cost, emissions and dump energy. The genetic algorithm is 

used to solve the formulated non-linear optimization problem. The proposed approach can achieve 

reductions in fuel consumption, emissions and replacement costs. However, the sizing of BESS is 

based on the battery autonomous days, so the discharge or charge efficiencies have been neglected. 

Ref. [20] presents the allocation of DG for radial distribution networks. The formulated objective 

is to minimize the network power loss and the maximum node voltage deviation. The adaptive 

genetic algorithm is applied to solve the formulated problem. Ref. [21] presents an interval opti-

mization method for the optimal sizing of BESS in a hybrid PV/diesel/ESS ship power system. 

Also, the impact of ship swinging has been modeled based on a series of experiments, and the in-

terval uncertainty of PV is characterized on a moving ship. Ref. [22] proposes a two-stage sto-

chastic programming for day-ahead unit commitment and dispatch decision, in combination with a 

Markov decision process at a daily timescale. After obtaining the Markov decision process, the 

future operating costs can be predicted and the optimal sizing of wind farm and BESS can be de-

termined based on a surrogate function optimization. To relax the equality constraint of energy 

balances, the general daily demand profile has been characterized by two peaks. As a result, the 

hourly BESS operating profile cannot be modeled. Ref. [23] proposes the DG allocation for mini-

mizing energy loss and enhancing voltage stability based on benefit-cost analysis. Efforts have 

been made to propose an optimal power factor, which can be used to calculate the active and reac-
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tive power sizes required by DG. Ref. [24] proposes a chance-constrained stochastic optimization 

model for the optimal location and capacity of BESS, aiming to maximize wind power utilization 

and minimize the investment and operation costs. Ref. [25] presents the optimal location and ca-

pacity of DG units, in order to minimize the system losses. The DG active power, power factor, 

and location are jointly considered. However, most of the above-mentioned references have not 

taken into account the fuel supplies for thermal DG units. In other words, the fuel price and avail-

ability of thermal DG/MT units are totally based on assumptions. Moreover, the demand response 

(DR) programs such as controllable load are also not well addressed in those models. Ref. [26] 

presents the optimal sizing of hybrid wind, PV, diesel generation for a stand-alone power system. 

The Markov models are employed for the system load, wind turbines and PV. The objective is to 

minimize the installation and unit cost as well as fuel cost, and the optimization problem is solved 

by the GA algorithm. Ref. [27] presents a dynamic two-stage model for the integrated allocation 

of wind and PV DG units, gas-fired DG units, and smart metering, as well as network reinforce-

ment simultaneously. A nodal-based DR model is employed to capture the responsiveness to re-

al-time pricing. The formulated objective is to minimize the total economic and carbon-emission 

costs. In the studies above, the fuel of thermal units is normally assumed to be unlimited and the 

fuel cost variation of DG is excluded.  

To sum up, three main research gaps are found in the existing literature, as follows. 1) Most 

of the proposed models in the literature use linear programming and only consider the energy bal-

ance constraints, thereby neglecting some important parameters of network constraints (e.g. reac-

tive power and gas pressure). 2) The demand conversion between thermal and electric energy is 

not well addressed. 3) The interacting operations of electricity and natural gas networks are not 

modelled (e.g. the fuel prices and requirements of gas-fired micro turbines are based on assump-

tions). To address these research gaps, this paper proposes a two-stage stochastic optimal alloca-

tion of BESS, as well as PV and gas-fired DG units integrally. Given the intermittency of solar 

energy, models of hot water system (HWS) and interruptible load (IL) are explicitly considered to 

analyse their roles in smoothing and storing solar energy. The two-stage optimization problem is 

comprised of the first stage here-and-now allocation decisions and the second stage wait-and-see 

operation decisions for the coupled gas and electricity microgrids. The gas and electricity market 

timeline mismatch is taken into account, and the arbitrage benefits of energy storage (such as gas 

linepack and BESS) are analyzed. Furthermore, the proposed model can effectively investigate the 

mutual interactions of gas and electricity on the microgrid operational performance. The integrat-

ed investment and operation decisions can be made to provide valuable guidance for microgrid 

planning. 

2. Problem Description 

As seen in Fig. 1, this paper assumes that a microgrid operator jointly plans and operates a 

coupled micro electricity and natural gas grid. This operator aims to minimize the energy pro-

curement cost in the electricity and natural gas pool markets, by investing and efficiently utilizing 

the distributed energy resources (DERs) in the microgrid, such as MT, fuel cell (FC), solar PV, IL 

and BESS. The electricity spot market structure is on a 5-min basis, while gas pool market is on a 

4-h basis during daytime and on an 8-h basis during night time. The microgrid is a price-taker in 

markets. More detailed information about this joint Australian gas and electricity pool market 

structure can be found in [28]. Moreover, in the microgrid the load aggregator performs as an 
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agent to represent end-users to participate in system operations. It is assumed that the load aggre-

gator is authorized to directly manage, monitor and control the HWS and IL units of end users. 

Wind

Solar

BESS

EV

Power load

Thermal load

DR

Gas storage

Gas DG

Compressor

Power grid

Gas grid

Power

Gas  

Fig. 1. A coupled micro electricity and natural gas grid. 

3. Mathematical Formulation 

This section introduces the detailed mathematical models used in this paper, including gas 

network model, solar PV model, fuel cell cost model, and controllable load model.  

3.1 Gas Network Model 

1) Linepack model 

Linepack is the pressurized gas stored in pipelines throughout the gas networks. Linepack is 

proportional to the average pressure in a pipe [29]. Gas in pipes can be described by four variables, 

i.e., gas pressure p (kPa), volume H (m3), density  (kg/m3) and temperature Gas (K). Ac-

cording to the Boyle’s law, gas variables are expressed as [30]: 





 Gas

pp

 00

0                            (1) 

00HpHp ij

Aver                               (2) 

where 0p , 0H , 0 , 0 are gas pressure, volume, density and temperature under normal condi-

tions;  is a constant. In a pipe, gas volume is equal to the pipe volume capacity. The steady state 

average pressure in a gas pipe can be expressed as  2221 ji

Aver

ij pp/p  . In a steady state, the 

initial LP measured in energy (GJ) ( Initial

ij ) under normal conditions is [30]: 

 00/Hp ij

Aver

ij

Initial

ij                           (3) 

where  denotes the constant that coverts gas volume under the normal condition to energy 

(GJ/m3). 

In dynamic situations, based on the law of conservation of mass, LP changes with the initial 

gas stored in pipes, the net difference between the supplied and consumed gas in a pipe[29]. Dy-

namic LP 1 t,ij is described as follows.  
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tPGas

t,ijt,ijt,ij  1                             (4) 

Comp,Gas

ijt

Gas

Dijt

Gas

Gijt

Gas

t,ij PPPP                         (5) 

t,ijt,ijt,ij
                               (6) 

where Gas

GijtP , Gas

DijtP , Comp,Gas

ijtP denote supplied gas, gas demands, gas consumed by compressors be-

tween ji  ; t denotes a factor that converts power (GJ/h) to energy (GJ), i.e., time duration; 

    , denote lower and upper bounds respectively. 

2) Flow equation 

Gas flows in a steady state can be modeled by the Weymouth’s formula. Gas flows gas

ijS and 

directions ijsgn  are dependent on nodal pressure differences, given as [29]: 

  22

jiijji

gas

ij ppp,psgnS                   (7) 

 











ji

ji

ji
ppif;

ppif;
p,psgn

1

1
                      (8) 

where ij is a gas pipeline constant in relation to diameter, length, temperature, altitude, rough-

ness etc.; ji p,p is the pressure at nodes i or j . 

3) Compressor station equation 

The energy consumed by a gas compressor (GC) depends on the amount of gas flows, and 

the difference between outlet and inlet gas pressures, as shown in empirical equations below [29].  

 
 
 

ij,

ji

ji

ij,ij,

ij

ji

Comp,Gas

ij

p,pmin

p,pmax

HP
p,psgnS

3

21

















       (9) 

  2

123 ij

Comp

ij,ij

Comp

ij,

Comp

ij,ij

Comp,Gas

i HPaHPaaHPP          (10) 

where Comp,Gas

ijS denotes gas flow in compressor between ji  ; ijHP denotes horse power for gas 

compressors; ij,1 , ij,2 , ij,3 denotes coefficients for the compressor between ji  ; Comp

ij,a1 , Comp

ij,a2 ,

Comp

ij,a3 are horse power coefficients of the gas compressor;
Compgas

iP ,
is the gas consumption of the 

compressor (GJ/h). Moreover, the compressor pressure ratio Comp

ijCPR  is also bounded as: 

 
 

Comp

ij

ji

jiComp

ij
CPR

p,pmin

p,pmax
CPR                   (11) 
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3.2 Solar PV Model 

The solar PV power output is assumed to follow a linear function of the solar radiation as 

[31]: 

    25005.01 0  tIASIP tiiPVti

PV

ti                               (12) 

where PV is the conversion efficiency; iAS is the array size (m2); 
PV

tiP , tiI are solar output and 

radiation (kW/m2) at time t  bus i ; 0t denotes the ambient temperature. 

3.3 Fuel Cell (FC) Cost Model 

FC units use an electrochemical process to turn hydrogen and oxygen into pollution free 

electricity and heat. The cost of FC can be presented by [12]: 

  Cell

tii

Cell

ti

Cell

ti PPC 1                             (13) 

Cell

ti
Cell

ti PP 0                               (14) 

where 
Cell

tiC , 
Cell

tiP denote the cost and power output of FC at time t and bus i ; i1 is cost coef-

ficient of FC. 

3.4 Controllable Load (CL) Model  

In this paper, the HWS and interruptible heating ventilation air-conditioning (HVAC) loads 

are considered as CL. Specifically, the HWS plays a role of energy storage but without operation 

or life-cycle degradation cost. Meanwhile, the HVAC load is IL that is coordinated and controlled 

by the local agent (aggregator). Incentives are paid to customers who reduce (positive IL) or in-

crease (negative IL) their HVAC energy consumption when requested.  

1) Hot water system (HWS) model 

We assume that the water volume in the HWS is constant. In other words, HWS is refilled 

simultaneously. Also, the insulation loss of HWS is assumed to follow a linear function of water 

temperature, and the temperature of inlet water ( 0 ) is assumed to be 20oC. The HWS can be 

modelled: 

Loss

ti

HWS

Dti

HWS

i
HWSHWS

ti

HWS

i,t

HWS

ti EEtPEE   1               (15) 

 
3600

0 i

HWS

tiHWS

ti

V
E


                          (16) 

HWS
HWS

ti

HWS
                                 (17) 

  
i

HWS

tiHWS

ti

Loss

ti
V

E
E





3600

0                      (18) 

HWS

Initial,i

HWS

i EE 0 ;
HWS

End,i

HWS

Ti EE                           (19) 

where 
HWS

ti is the binary variable denoting the ON/OFF status of HWS; t is a time factor con-
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verting power (kW) to energy (kWh); 
HWS denote HWS charge efficiency; 

HWS

ti is the water 

temperature at time t and bus i ;  denotes the specific heat of water (4.186 kJ/kgoC); iV is the 

water volume of HWS;
HWS

DtiE is the energy demand of HWS (kWh) at time t and bus i , which is 

converted from the hot water volume and temperature by (16) ;  the heat loss factor (kWh/oC);

Loss

tiE is the energy loss of HWS. The energy stored in HWS at time t and bus i ,i.e.,
HWS

tiE , is ex-

pressed as the net sum of energy stored at time 1t , the charged energy, consumed energy and 

the energy loss at time t , as given in (15) and (16). We assume that end-users can only control the 

ON/OFF status of HWS, and the charge power is not a variable. The water temperature is bounded 

by (17); the energy loss is calculated by (18); and (19) states the constraints on the initial ( HWS

Initial,iE ) 

and the final energy ( HWS

End,iE ) stored in HWS.  

2) Cost of interruptible heating ventilation air-conditioning (HVAC) load model 

We assume that load aggregators can directly control (increase or decrease) HVAC loads. In-

centives paid to customers can be modelled by a quadratic cost function as below[32]: 

D

IL

ti

IL

ti

IL

ti i,PPC  2

2

1
2

1
 ）（                     (20) 

Dtiti

IL

tiDtiti
PPP                               (21) 

where 
IL

tiC , 
IL

tiP denote cost and adjusted power of interruptible HVAC load; 1 , 2 denote cost 

coefficients of IL; 
ti

 , ti denote lower and upper bounds of IL; DtiP denotes power demand at 

time t and bus i ;
D

 denotes the set of load buses. 

 

4. Proposed Two-stage Stochastic Model 

The optimal sitting and sizing of MT, PV and BESS and the optimal operation of the coupled 

micro energy grids are realized at two coordinated timescales. The planning problem is formulated 

into a two-stage stochastic programming model. In the first stage here-and-now allocation deci-

sions are made before the actual realization of the uncertain data at the operational level. In the 

second stage, after a realization of uncertain data becomes available, a wait-and-see decision is 

made to compensate for a possible inconsistency between the prediction and reality in the first 

stage. The objective of the two-stage stochastic programming problem is given: 

Min   Og β                                    (22) 

where β denotes the vector of optimal sitting and sizing decisions of MT, PV and BESS; O de-

notes the expected operation cost. The first terms in (22) are calculated using (23).  
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  
 



















Ni
PV

i
PVPV

i

Gi
MTMT

i

BESS

R

BESSBESS

i

PCF

PCFECF
g




β         (23) 

where 
BESS

i , 
MT

i ,
PV

i are integer decision variables denoting how many BESS, MT and PV 

should be built at bus i ; BESSCF , GCF , PVCF are capital recovery factors on a daily basis[1]; 

BESS

RE , GiP ,
PV

iP are rated energy capacity of BESS and maximum active power outputs of MT 

and PV respectively; N denotes the set of all buses. 

4.1 Detailed Models of the Second-stage 

In the second stage, the objective is to minimize the sum of costs of MT, IL, BESS, FC, 

power exchanged and gas purchased, as given: 

       
    

















Gas

Gt

Ex

t

Cell

ti

BESS

ti

IL

tiGti

PfPf

PfPfPfPf
O

65

4321
E              (24) 

where GtiP , 
IL

tiP , 
BESS

tiP , 
Cell

tiP  denote active power outputs of MT, IL, BESS, FC at time t and 

bus i ;
Ex

tP Gas

GtP denote the exchanged power and purchased gas at time t . 

Each term in (24) is calculated as: 

   











 
 

Gas

ti

Gas

ti

i Tt

GtiiGtiiGti

zCVFa;zCVFa

PaPaPf
N

2211

2

2

11

                  (25) 

  
 











Di Tt

IL

ti

IL

ti

IL

ti PPPf 2

2

12
2

1
 ）（                (26) 

    
 


Ni Tt

CBESS

ti

BESSDBESS

ti

BESSBESS

ti PPPf 3               (27) 

    
 


FCi Tt

Cell

tii

Cell

ti PPf 14                         (28) 

      



Tt

E x p

t

E x p

t

Tt

pIm

t

pIm

t

Exp

t

pIm

t

Ex

t PzPzP,PfPf 55            (29) 

  



Tt

Gas

Gt

Gas

t

Gas

Gt PzPf6                           (30) 

where ia1 , ia2 denote generation cost coefficients of MT;  1CVF , 2CVF denote cost conversion 

factors , i.e., converting gas price ($/GJ) to generation cost coefficients; 
Gas

tz is the gas price;

DBESS

tiP , 
CBESS

tiP are non-negative dis/charged power of BESS, which are introduced to eliminate 

the nonlinearity of BESS power profile; BESS is the cost coefficient of BESS, which is dependent 
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on life-cycles and investment cost of BESS; 
p

tP Im
denotes the purchased power at price 

pIm

tz ; 

Exp

tP denotes the sold power at price 
Exp

tz ; FC denotes the set of FC; T denotes total time hori-

zon. 

4.2 Constraints 

1) Power nodal balance 






































pIm

t

Cell

ti

HWS

i
HWS

ti

DBESS

ti

PV

tiGti

Exp

t

Curt

Dti

IL

ti

CBESS

tiDti

PPP

PPP

PP

PPP


           (31) 

where
Curt

DtiP denotes the curtailed power. 

2) Gas nodal balance 

Comp,Gas

ti

CLP

ti

Gas

Dti

Gas

tji

Gas

tij

DLP

ti

Gas

Gti PPPSSPP            (32) 

Heat,Gas

Dti

MT,Gas

Dti

Gas

Dti PPP                              (33) 

where
DLP

tiP ,
CLP

tiP denote discharged and charged linepack respectively; 
MT,Gas

DtiP ,
Heat,Gas

DtiP denote 

gas demand for MT and non-electric gas demand respectively; Gas

tijS denote gas flow between 

ji  at time t . 

3) Linepack constraint 

tPtPtPtP DLP

tj

CLP

tj

DLP

ti

CLP

tit,ijt,ij  1                (34) 

t,ijt,ijt,ij
                                 (35) 

DFP CLP

ti

CLP

ti  0                                  (36) 

DFP DLP

ti

DLP

ti  0                                 (37) 

1 DLP

ti

CLP

ti                                     (38) 

where DF denotes the disjunctive factor (a very large positive value); 
CLP

ti , 
DLP

ti are binary 

variables denoting the charge and discharge decisions of linepack, and they cannot be 1 at the 

same time. 

4) Power flow constraint 

  0 tjtiijtijPL                                (39) 

ijtijij
PLPLPL                                   (40) 

where tijPL , ij denote active power flow and susceptance; ti , tj  denote voltage angles.  
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5) Gas flow constraint 

Gas network constraints (7)-(11) are linearized by the first-order Taylor series approximation 

proposed in [33]. 

6) MT and PV generation constraints 

Gi
MT

iGtiGi

MT

i PPP   ; Ni                      (41) 

tHRPP GasMT,Gas

DtiGti
MT

i                         (42) 

N

Gi

MT

iGtii,Gt

Gi

MT

ii,GtGti
j,i;

RDPP

RUPP




















1

1
                   (43) 

 N

PV

i
PV

i

PV

ti i;PP  0                             (44) 

where GiRU , GiRD  denote ramping up and ramping down limits of MT at bus i ; GasHR is the 

heat rate of gas (kW/GJ) considering the energy efficiency of MT. Equation (42) states that the 

output of MT is subject to the gas availability. Note that constraints (41)-(42) can be easily ex-

tended to CHP units with simple modification. This is not in the scope of this paper [33]. 

7) BESS constraints 

tP/tPEE C

CBESS

tiD

DBESS

ti

BESS

i,t

BESS

i,t  1                  (45) 

SOCEESOCE BESS

R

BESS

i

BESS

ti

BESS

R

BESS

i               (46) 

DBESS
BESS

i

DBESS

ti PP 0                           (47) 

CBESS
BESS

i

CBESS

ti PP 0                          (48) 

BESS

Initial,i

BESS

i

BESS

i EE  0 ;
BESS

End,i

BESS

i

BESS

Ti EE                     (49) 

where BESS

i,tE , tiSOC  denote the energy stored in BESS and state-of-charge (SOC) at time t and 

bus i ; D , C denote discharge and charge efficiency; (47)-(48) are introduced to remove the 

nonlinearities of the BESS power profile. Equation (49) defines the initial and final energy in 

BESS. Be noted that binary variables for dis/charge decisions are not needed, provided that the 

BESS dis/charge efficiencies are different. 

8) System reserve constraints 

 

 


















 



 

DN

DN GS

i

Dti

i

Ex

Gi

MT

i

i

Dti

i i

ExPV

i
PV

iGi
MT

i

PRDPP

PRUPPP

1

1





             (50) 

where RU , RD denote system ramping up and ramping down reserve. 

9) Fuel cell constraints 

FC constraints include (13) and (14). 
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10) Controllable load constraints 

CL constraints include (15)-(21). 

11) Interconnection constraints 












Ex
Exp

t

Exp

t

Ex
pIm

t

pIm

t

PP

PP





0

0
                            (51) 

1 Exp

t

pIm

t                                     (52) 

where 
Ex

tP denotes the upper bound of the exchanged power; 
pIm

t ,
Exp

t are binary decision var-

iables of importing and exporting power. 

12) Load curtailment and reliability constraints 

LOLEPLOLE
Di Tt

Curt

Dti  
 

                       (53) 

DDti

Curt

Dti i;PP                              (54) 

where LOLE denotes loss of load expectation, which is a reliability measure for microgrids. 

4.3 Scenario Construction and Reduction 

In this paper, solar generation, load, electricity and gas prices are considered as uncertainties. 

The stochastic variations of the uncertainties from their predicted values are assumed to follow the 

Beta distribution (i.e., solar forecast errors) [34] and the normal distribution (i.e., electricity and 

gas prices, and load forecast errors) respectively [35]. To enhance the computational efficiency, 

the point estimation method is used [36].  

If the operation cost vector is denoted by O , the k th term kO  is caused by the uncertainty 

in the variable kx . The nonlinear function kf  is expressed as: 

 mkkk x,x,x,xfO 21                           (55) 

where kx is a random variable. The total number of random variables is m . Each kx is assumed 

to be a random variable with known mean and variance based on historical data or expert 

knowledge. 

Note that for a mL scheme the statistical information provided by the first few moments is 

concentrated on L points for each variable kx , named concentration. In other words, the deter-

ministic problem has to be solved L times for each input random variable. The l th concentration 

of the random variable kx is represented by a location lkx ,  and a weight  lklklk wxw ,,, , . Also, the 

relation between the input and output variables is represented by a nonlinear function 

 mk xxxxF  ,,,, 21  with m input random variables. The location lkx , is determined by: 

kk xlkxlkx  ,,                            (56) 
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where lk , is the standard location, and 
kx and 

kx are the mean and standard deviation of the 

input random variable kx . 

The standard location lk , and the weight lkw , are obtained by solving the following nonlinear 

equations: 

m
w

L

l

lk

1

1

, 


                                (57) 

  12,,2,1,,

1

, 


Lnw nk

n

lk

L

l

lk                    (58) 

where nk , is the n th standard central moment of the random variable kx with probability density 

function 
kxf , and that is:  

 
 nx

kn
nk

k

xM


 ,

                               (59) 

Note that 1,k equals zero, 2,k equals one, and 3,k  and 4,k  are the skewness and kurto-

sis of kx . The n th central moment of the random variable kx is 

    kx

n

xkkn dxfxxM
kk




                       (60) 

Once all the concentrations  lklk wx ,, , are obtained, the nonlinear function F is used to cal-

culate the vector of random output variables of the operation cost  l,kO  at each point

 
mxlkxx x  ,,,,, ,21

 : 

   
mxl,kxx ,,x,,,Fl,kO  

21
                      (61) 

The 12 m scheme can provide the desired statistical information regarding random output 

variables by solving (57)-(58) for 3L and 03, k . The standard locations and weights are: 

  02,1
4

3
1

2
3,

2

3,4,

33,

, 


kkk

lk

lk l 


          (62) 

 
 

2,1
1

2,1,,

3

, 







lw
kklk

l

lk


                  (63) 

2

3,4,

3,

11

kk

k
m

w
 

                        (64) 

Note that this scheme sets 03, k , having
kxlkx ,
in (57) and (58), and so m of the m3

locations are the same point  
mk xxxx  ,,,,,

21
 . Therefore, running one evaluation of func-
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tion F at this location is enough, provided that the corresponding weight is updated to the value 

0w as follows: 

 
  


m

k

m

k kk

kww
1 1

2

3,4,

3,0

1
1


                     (65) 

By using the weighting factor lkw , and  l,kO values, the n th raw moments of the random 

output variables are estimated by: 

   
 


m

k

L

l

n

l,k

n )l,k(OwOE
1 1

                     (66) 

Therefore, using the point estimation method, the formulated objective (22) can be rewritten 

as:  

Min    
 


m

k

L

l

n

l,k )l,k(Owg
1 1

β                         (67) 

4.4 Solution Method 

The formulated two-stage model is a mixed integer quadratic programming (MIQP) problem, 

which can be efficiently solved by commercial solvers such as CPLEX. In the first stage, the deci-

sion variables are integer variables 
BESS

i ,
MT

i ,
PV

i . In the second stage, the decision variables 

include binary variables
CLP

ti ,
DLP

ti ,
HWS

ti  ,
pIm

t ,
Exp

t and continuous variables GtiP ,
DLP

tiP ,
Gas

GtP ,

CLP

tiP , 
CBESS

tiP ,
DBESS

tiP ,
IL

tiP , 
Cell

tiP ,
pIm

tP ,
Exp

tP ,
Curt

DtiP . 

 

5. Case Studies 

The proposed approach is tested on a coupled 14-bus gas and electricity system. The one-line 

diagram of the system is shown in Fig. 2 and the system data can be found in [37], [38]. The peak 

general load is 19.53 kW and the peak residential gas load is 0.5391 GJ/hour. The original power 

suppliers in the microgrid include one 5 kW solar PV, one 7 kWh BESS, one 3 kW FC, and two 5 

kW MT. CL resources including HWS and HVAC are assumed to be located at all load buses and 

the maximum IL ratio is 10%. The water volume of HWS is 250 Liters, and the working tempera-

ture range is from 45oC to 65oC. The inlet water temperature is assumed to be 20oC. The daily 

profiles of 5-min general load, hot water load, electricity price, residential gas demand and gas 

price are shown in Fig. 3 [28]. The general power load usually can be categorized into base load 

(e.g. load of fridges) and controllable load (e.g. load of air-conditioners or TVs). Hot water load 

usually refers to hot water consumption (e.g. hot water for taking a shower). Residential gas load 

usually refers to gas consumptions for cooking or heating. Generally speaking, the variation of the 

base power load is very small. However, the variations of controllable power load, hot water load 

and residential gas load are related to whether occupants are at home and the activities of occu-

pants. On the other hand, the variations of electricity and gas prices are more complicated, as these 

variations are related to the energy market situations (e.g. the overall energy supply and demand), 
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time-of-use network charges, constraints of energy networks, bidding behavior of market partici-

pants, etc. The parameters of candidates of MT, BESS and PV are given in Tables 1, 2 and 3. The 

simulations were completed by a PC with Intel Core i7-6600 CPU @ 2.80 GHZ with 8.00 GB 

RAM.  

1

2 3

Power

Gas

GC

4 5 6

8

7 9

10 11 12 13

14

MT1

MT2

FC

BESS

PV

Main grid

 

Fig. 2. One line diagram of 14-bus coupled micro energy grids. 

Table 1 Parameters of candidate MT 

Item Value Item Value 

Min. capacity 0 kW Ramp down 0.18 kW/min 

Max. capacity 2.5 kW Investment cost $500/kW 

Life span 20 yrs 
1CVF  

0.0024 

Ramp up 0.16 kW/min 
2CVF  

1.0235 

Table 2 Parameters of candidate BESS 

Item Value Item Value 

Dis/charge power  

capacity 

1.4 kW; 1.2 kW Life cycles 3000 times 

Energy capacity 2.5 kWh Initial/ final energy 1.25 kWh 

Dis/ Charge efficiency 95%; 90% Investment cost 200
BESS

RE $ 

Table 3 Parameters of candidate solar PV 

Item Value Item Value 

Max. capacity 2.5 kW Investment cost $400/kW 
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Fig. 3. Daily profiles of general load, hot water load, electricity prices, residential gas demand and gas price. 

To verify the effectiveness of the proposed approach, three cases are compared: Case 1: A 

single-stage stochastic planning model for coupled micro energy grids. Case 2: A two-stage plan-

ning model with scenario reduction. But gas and electricity grids are operated separately. Case 3: 

The proposed two-stage planning model for the coupled micro energy grid. 

Table 4 Allocation results of Case 1 

Bus no./kWh/kW 

BESS 

(kWh) 

Bus 2 3 4 5 8 10 12 13 14 

Size 12.5 10 10 10 10 10 10 10 7.5 

MT 

(kW) 

Bus 3 5 11 

Size 10 10 5 

PV 

(kW) 

Bus 2 3 4 5 8 10 12 13 14 

Size 5 5 5 5 5 5 5 5 5 

Table 5 Allocation results of Case 2 

Bus no./kWh/kW 

BESS 

(kWh) 

Bus 2 3 4 5 6 10 11 

Size 12.5 20 15 7.5 10 15 10 

MT 

(kW) 

Bus 3 10 

Size 15 10 

PV 

(kW) 

Bus 2 3 4 5 6 10 11 

Size 5 10 5 5 5 10 5 

The allocation results of BESS, MT and PV for cases 1-3 are given in Table 4-6. We can see 

that the total capacities of BESS, MT and PV for the three cases are identical, i.e., 90 kWh of 

BESS, 25 kW of MT, and 45 kW of PV. When gas network constraints are not considered in case 
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2, larger capacities of MT are located at buses 3 and 10. It should be noted that these two MT units 

might not be able reach their maximum capacity, since their outputs are constrained by fuel avail-

ability in the gas grid. In other words, the separated planning approach might lead to impractical 

operation results. Moreover, the allocation results for cases 1 and 3 are similar, except a sitting 

decision of MT (a 5-kW MT is sat at bus 11 for case 1 but at bus 10 for case 3).  

Table 6 Allocation results of Case 3 

Bus no./kWh/kW 

BESS 

(kWh) 

Bus 2 3 4 5 8 10 12 13 14 

Size 12.5 10 10 10 10 10 10 10 7.5 

MT 

(kW) 

Bus 3 5 11 

Size 10 10 5 

PV 

(kW) 

Bus 2 3 4 5 8 10 12 13 14 

Size 5 5 5 5 5 5 5 5 5 

Fig.4 compares the hourly exchanged power with the main grid for cases 1 and 3. Generally 

speaking, the microgrid prefers to sell electricity at morning and evening peaks, when the electric-

ity price is relatively high. The PV production and electricity purchased from the grid are mainly 

used to charge HWS and BESS. The BESS plays a critical role in making arbitrage benefits. The 

total purchased electricity quantities are 39.23 kWh and 76.49 kWh for cases 1 and 3 respectively; 

while total sold electricity quantities are 154.68 kWh and 203.76 kWh. In contrast to the single 

stage planning in case 1, the proposed two-stage planning is less conservative and more energy is 

traded.  
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Fig. 4 Hourly exchanged power for cases 1 and 3. 

The linepack variations corresponding to gas supply and demand imbalance are illustrated in 

Fig. 5. Since gas is dispatched at larger time intervals, the gas purchase decisions are very strate-

gic. Compared to case 2, the coordinated gas and power grid operation buys more gas in the even-

ing. Also, one interesting difference is that linepack is mainly consumed in the morning peak for 

case 2, while in the evening peak for case 3. This is because that the coordinated planning in case 

3 can strategically save linepack for the MT gas demand peak in the evening. Furthermore, the 
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SOC of BESS corresponding to dis/charged power, outputs of MT, FC and IL is illustrated in Fig. 

6. We can see that for cases 2 and 3 BESS are mainly charged between 12pm and 16 pm, and dis-

charged in morning and evening peaks. However, for case 2, the microgrid buys electricity to 

charge BESS at 4 am. As a result, more BESS energy is used for the morning peak, instead of us-

ing MT, IL or FC. For case 2, the total energy amounts produced by MT, FC and IL are 201.78, 

9.22 and 4.4 kWh respectively. For case 3, the total energy amounts produced by MT, FC and IL 

are 199.04, 8.21 and 3.91 kWh respectively. To better demonstrate the daily load of customers, in 

Fig. 7, we have given the 5-min power profiles at bus 7 in case 3, including BESS, HWS, solar PV, 

general load and net power. This customer does not have MT. BESS is discharged between 5-7 am 

and 17-19 pm, when the electricity prices are high. After the HWS and the BESS are charged by 

PV, most of the energy is exported between 10 am and 15 pm. It is worth mentioning that IL is not 

used, as the peak of this customer is not evident. 
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Fig. 5 Gas linepack profiles for case 2 and 3. 
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Fig. 6 SOC and outputs from MT, FC and IL for cases 2 and 3. 
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Fig. 7 Detailed 5-min power profile at bus 7 in case 3. 

Table 7 compares the detailed cost compositions for cases 1-3. Although the investment cost 

(IC) for all cases are the same, the total operation cost (OC) is the lowest for case 3 ($78.8034). 

The separated planning approach in case 2 leads to inferior solutions, as the objective value is the 

highest ($114.6799). Moreover, case 1 is the worst in terms of the computational efficiency, as the 

single-stage stochastic programing approach requires 4574 seconds before it converges. Also, the 

single-stage planning model in case 1 fails to effectively investigate the interactions between in-

vestment and operating decisions. Compared to case 3, the total OC for case 1 is relatively higher, 

thus leading to a higher total cost. To sum up, the proposed approach is superior from both opti-

mality and computational efficiency perspectives.  

Table 7 Detailed result comparison for three cases 

Item Case 1 Case 2 Case 3 

IC of BESS ($) 11.3905 11.3905 11.3905 

IC of MT ($) 2.7480 2.7480 2.7480 

IC of PV ($) 6.3865 6.3865 6.3865 

Total IC ($) 20.5070 20.5070 20.5070 

OC of MT ($) 7.3416 7.7892 7.2311 

OC of IL ($) 0.7013 0.8865 0.6784 

OC of BESS ($) 14.0622 18.9712 13.6209 

OC of FC ($) 0.8236 0.8579 0.8236 

Cost of power ($) 3.7062 7.6618 7.5974 

Cost of gas ($) 80.9658 84.8907 76.3887 

Rev. of power ($) -19.1104 -26.8844 -27.5367 

Total OC ($) 88.4903 94.1729 78.8034 

Objective ($) 108.9973 114.6799 99.3104 

Elapsed(seconds) 4574 1012 986 

 

6. Conclusions 

This paper has proposed the two-stage optimal allocation of solar PV, BESS, and gas-fired 

MT, including optimal sitting and sizing decisions for a coupled micro gas and electricity grid. 

The mutual interactions of electric and heat energy are investigated, and the optimal operation of 
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the microgrid aims to minimize the sum of operation cost of MT, IL, BESS, FC, power and gas 

exchanged with the main grid. According to the simulation results, the single stage stochastic ap-

proach suffers considerable computational burden and identifies a less economical operation 

strategy. The separated planning approach is likely to lead to inferior or improper solutions under 

the gas price and availability assumptions. By contrast, the proposed approach is capable of iden-

tifying feasible and optimal investment and operation solutions from the integrated perspective, 

thus providing valuable guidance for microgrid planning. Based on the case studies, the proposed 

two-stage planning model can identify a planning solution with the objective value of $99.3104, 

which is comprised of the daily capital recovery cost of $20.5070, the daily operating cost of 

$78.8034 for the coupled micro gas and electricity grid. 
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