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Abstract—Two-way communication facilities and advanced 

metering infrastructure enable residential buildings to be capable 
of actively participating in demand side management schemes. 
This paper proposes a new home energy management system 
(HEMS), which optimally schedules the operation of home ener-
gy resources, with the aim to minimize the home’s one-day elec-
tricity cost charged by the real-time pricing while taking into 
account the monthly basis peak power consumption penalty, 
charged by the demand charge tariff. To better ensure the user’s 
lifestyle requirements, the HEMS also models lifestyle-related 
operational dependencies of household appliances. Numerical 
simulations and case studies are conducted to validate the rea-
sonability of the proposed method.  
 

1Index Terms—Smart home, demand response, demand side 
management, building automation, smart grid 

NOMENCLATURE 
Indices and Sets 

,a Ω  Index and set of HERs 
1 2

3 4

,
,

Ω Ω

Ω Ω

，
 Set of HERs with the category index of 1, 

2, 3, and 4;  

Parameters 
A  Surface area of the PV solar panel (m2);   
T  Total number of scheduling time intervals; 

t∆  Duration of a time interval (hour); 

σ  Energy conversion efficiency of the PV 
solar panel (%); 

tr  Solar radiation at time t (kW/m2); 
pv

tP  Solar power output at time t (kW); 
min max,a aP P  Minimum and maximum power consump-

tion of appliance a (kW); 
rate

aP  Rated power of appliance a (kW); 
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lowϕ , upϕ  Lowest and highest acceptable indoor tem-
perature specified by the user (ºC); 

out
tϕ  Outdoor temperature at time t (ºC); 
RTP
tλ  Forecasted real-time electricity price at 

time t ($/kWh);   
DCTλ  Demand charge tariff ($/kW);  

P′  Historical peak power in previously days 
of the current month (kW); 

ω  Weighting constant;  

,c dη η  Charging and discharging efficiency of the 
RBESS (%);  

,ess rateE  Energy capacity of the RBESS (kWh);  

1 2,pmt pmt
a at t  

Begin and end time of the user-specified 
permitted operation time range of appli-
ance a; 

,ess rateP  Rated power of the RBESS (kW); 
minSOC  Lower SOC limit of the RBESS (%); 
maxSOC  Upper SOC limit of the RBESS; 
dsrSOC  Minimum SOC level of ESS a at the end of 

the scheduling horizon; 

,th thC R  Thermal capacitance (kWh/ºC) and reac-
tance (ºC/kW) of the building;  

req
aE  Required energy consumption of appliance 

a (kWh);  
,minon

aτ  Minimum online time requirement of ap-
pliance a (hour); 

Variables 

,a ts  Status of the controllable appliance a at 
time t (1-ON, 0-OFF); 

tϕ  Indoor temperature at time t (ºC); 

iP  Power consumption schedule of HER i;  

hP  Net-house power consumption profile;  

,i tP  Power consumption schedule of HER i at 
time t;  

ess
tSOC  State-of-Charge of the RBESS at time t 

(%);  
ess
tE  Energy stored in the RBESS at time t 

(kWh); 

ess
tP  

Power consumption of the RBESS at time t 
(kW, positive: charging, negative: dis-
charging);  
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ac
tP  Power consumption of the air conditioner 

at time t (kW);  

,
on
a tτ  Accumulated online duration of controlla-

ble appliance a at time t (hour); 

I.  INTRODUCTION 

 DMAND RESPONSE is one of the most important top-
ics in smart grid. Through two-way communication facil-

ities and Advanced Metering Infrastructure (AMI), demand 
side resources are capable to actively respond to certain de-
mand side management (DSM) signals and re-shape their 
power consumption profiles [1]. Demand response is benefi-
cial for both end users and the utility. On one hand, it can help 
end users to reduce their electricity cost and better utilize user-
side energy sources; on the other hand, it can support the 
grid’s operation in terms of balancing renewable energy, shift-
ing system peak demand, reducing generation backup, infer-
ring network investment, and so on.  

From the utility’s prospective, traditional DSM schemes can 
be categorized into two classes: incentive-based DSM (or 
known as Direct Load Control, DLC) and pricing-based DSM 
(or known as Indirect Load Control, IDLC). In DLC, appli-
ances in buildings are directly controlled by the utility through 
remote controllers in certain time periods (e.g. peak demand or 
emergent periods). As subsidy, the utility provides the user 
certain incentive schemes, such as electricity pricing discount 
or customer reward. In IDLC, users are encouraged to actively 
shift their appliance usage time under certain dynamic elec-
tricity tariffs. The current commonly applied dynamic tariff 
schemes include Time-of-Use (TOU) tariff, Real-Time Pricing 
(RTP), critical peak pricing, etc.   

In recent years, with increasing applications of building au-
tomation devices and home wireless communication facilities, 
Home Energy Management Systems (HEMS) [2] have been 
playing important roles in demand response. HEMS is essen-
tially a kind of intelligent automation system that provides 
decision-support for residential users to effectively schedule 
and control home energy resources. HEMS can significantly 
help the user to tackle complexity incurred by the frequent 
update cycles of dynamic electricity tariffs, and also act as a 
delegation of the user to communicate with the utility and grid. 
Design and development of HEMS is extensively studied in 
the literature, with some representative works listed as follows. 
[2] proposed a HEMS that optimally schedules the operation 
of household appliances under a RTP scheme. [3] optimally 
schedules a Residential Battery Energy Storage System 
(RBESS) and multiple controllable household appliances to 
accommodate a rooftop solar power source. In [4], a house-
hold appliance commitment framework is proposed to mini-
mize the household operation cost. In [5], a HEMS is de-
signed, which dynamically schedule appliances in each dwell-
ing unit based on which the power demand of the whole com-
munity was forecasted and reported to the utility. [6] proposes 
a two-stage HEMS where, in the first stage, the charg-
ing/discharging of a RBESS is optimally scheduled based on 
the forecasted solar power and, in the second stage, the actual 
charging/discharging of the RBESS was determined based on 

actual solar power output. [7] studies the coordinated schedul-
ing of heating, ventilating, and air conditioning (HVAC) sys-
tem and home plugged EV. In our recent work [8], we study 
the development of HEMS with vehicle-to-home (V2H) tech-
nology and residential photovoltaic solar power [8]. In [9-11], 
we propose a special type of residential energy management 
system, i.e. “demand side recommender system”, which do not 
rely on automatic control devices, but use personalized rec-
ommendation technology to recommend energy-oriented 
products/services to residential users. 

Most of home energy management techniques focus on bill 
reduction or utility value maximization based on TOU or RTP 
tariffs. Under these tariffs, energy management strategies can 
be designed to shift home loads from peak pricing to off-peak 
pricing time slots. Recently, a new type of tariff –Demand 
Charge Tariff (DCT), is being introduced to the residential 
customers. DCT has been applied on large customers for quite 
a long time. For commercial and industrial customers, their 
electricity bills usually comprise of two major components, 
the energy cost and the demand charge. DCT is a one-off 
charge based on the maximum demand (power, kW) recorded 
during an entire billing cycle. A typical billing cycle is usually 
a calendar month, while the peak demand is calculated and 
recorded as the moving average of the power consumption 
over a specific period, e.g. 15 minutes or half an hour [12, 13]. 
Research has focussed at studying energy management of mi-
crogrids [26] and large customer’s energy storage systems 
[27] with DCT. For example, the authors of [26] develop an 
economic dispatch model for fast-responding generators in 
microgrids considering both TOU and DCT schemes. The 
authors of [27] propose a finite horizon dynamic optimization 
model for scheduling the charging/discharging power of a 
battery energy storage system to control the customer’s peak 
power and to minimize the expected DCT charging cost.  
More recently, there are proposals to introduce demand charge 
tariff to residential users [14, 15, 28], hoping to generate effect 
on smoothing the peak-valley ratio for the consumption in 
residential sector. For example, [28] demonstrates how DCT 
could benefit power grids if it is applied to residential custom-
ers. Furthermore, some Australian electricity retailers have 
been testing DCT to residential users [30, 31], and similar 
trend is also seen in the U.S.A [32]. Despite this, there is still a 
need to develop home energy resource management tech-
niques under DCT. 
  Based on above discussions, this paper is to propose a new 
HEMS that optimally manages the home energy resources for 
the user in a dynamic environment. Specific contributions of 
this paper include following two aspects: 
 (1) In this paper, we consider penetration of both RTP and 
DCT. Since home energy management is often performed on 
daily basis, as that will be shown in Section III, we propose a 
heuristic strategy to take into account the impact of DCT on 
one-day home operation. To the best of the authors’ 
knowledge, this is the first paper that considers demand charge 
tariff in appliance scheduling-based home energy management;        
 (2) Existing literature (e.g. [3-9]) only considers operational 
constraints of individual household appliances, and neglects 
operational dependencies between different appliances, which  
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Fig. 1. Schematic of the proposed HEMS 
 
actually reflect the user’s lifestyle. The HEMS proposed in 
this paper models the user lifestyle-related appliance opera-
tional dependencies as a set of constraints, and is thus capable 
to provide better decision-support to the user.  

This paper is organized as follows. Section II gives an over-
view of the home energy management environment; Section 
III presents the generalized model of appliance operational 
dependencies and the HEMS model; Section IV presents the 
solving approach; in Section V, simulation study is discussed; 
Section VI draws the conclusion and future work.  

II.  OVERVIEW OF HOME ENERGY MANAGEMENT 
ENVIRONMENT  

The smart home environment studied in this paper is illus-
trated in Fig. 1. The home is equipped with a rooftop PV solar 
source and a RBESS. The RBESS is used to accommodate the 
solar power and supply power to the home. It can also absorb 
power from the grid for later use when the electricity price is 
low; it can also store the surplus solar panel. Smart meter is 
installed, acting as a communication agent between the home 
and the grid. It receives dynamic electricity tariff information 
and other demand response signals from the utility, and sends 
the utility power consumption of the house at a regular time 
interval.   

A HEMS is deployed in the smart home, taking the role of 
managing home energy resources, including the RBESS and a 
number of controllable household appliances. It not only 
communicates with the home energy resources and smart me-
ter, interact with the user, but also communicates with the ex-
ternal environment. In the day-ahead stage, the HEMS collects 
the forecasted real-time pricing data, forecasted must-run, 
uncontrollable home load, and forecasted solar radiation data 
at the site where the house is located. These forecasting tasks 
can be implemented within the HEMS, or they can be provid-
ed by third-party services and accessed by the HEMS through 
communication channels.  The HEMS then uses an energy 
conversion model to convert the solar radiation into PV solar 
power output. The HEMS also accepts inputs from the user, 
including: a) the user’s preferred time range of each controlla-
ble appliance’s operation, and b) the user’s lifestyle specifica-

tion. The HEMS then interprets the lifestyle specification into 
a set of appliance operational dependency constraints. Based 
on above work, the HEMS solves an optimization model to 
determine operation plans for the controllable household ap-
pliances and charging/discharging plan for the RBESS, under 
both RTP and DCT.         

The HEMS can be implemented in the embedded processor 
of smart meter or in a dedicated processor; it can interact with 
the user with various kinds of digital media, such as smart 
phone application, LED digital screen, etc. The HEMS com-
municates with the home energy resources through a certain 
short-range wireless communication protocols, such as WiFi 
and Zigbee, and communicates with the optional external Web 
services through the TCP/IP protocol. The home energy data 
can be stored in local or third-party databases. Technologies 
such as anonymous encryption [24] and cloud authentication 
technologies [25] can be used to ensure the data’s integrity 
and security.        

 

III.  HOME ENERGY MANAGEMENT WITH DEMAND CHARGE 
TARIFF AND APPLIANCE OPERATIONAL DEPENDENCIES  

Following the system schematic presented in Section II, in 
this section we firstly present the generic Home Energy Re-
source (HER) models; then, we formulate the proposed HEMS 
model without appliance operational dependencies; followed 
by these, we present different categories of lifestyle-related 
appliance operational dependencies, which are modelled as 
additional constraints of the HEMS.  

A.  Residential Photovoltaic Solar Power Model 
Power output from PV solar panel is related to solar radia-

tion, panel’s surface area, and energy conversion efficiency of 
the panel, expressed as: 

pv
t tP A rσ= ⋅ ⋅                                    (1) 

B.  Generic Classification of Controllable HERs 
Consider a residential unit with N controllable HER and de-

note the set of HER as Ω , i.e. =NΩ . The controllable HERs 
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are further categorized into following sets based on their oper-
ational characteristics: 
• 1Ω : Set of HERs operating with power in the range of 

min max 1[ , ],a aP P a∈Ω  and having a prescribed energy con-
sumption that must be completed between a specific time 
range. Typical HERs in this set are residential energy 
storage systems, such as PEV and RBESS. For example, 
users often specify the plug-in and plug-out time of PEV, 
and require the SOC of the PEV battery must be larger 
than a threshold at the plug-out time; 

• 2Ω : Set of HERs operating with power in the range of 
min max 1[ , ],a aP P a∈Ω  but without a total energy consumption 

requirement. Instead, a certain disutility function is ap-
plied to measure the dissatisfaction of the user for deviat-
ing from a nominal operating point. Typical HERs in this 
class are thermostatically controlled appliances (TCAs) 
such as air conditioner, refrigerator, and heater;  

•   3Ω : Set of HERs operating at the nominal power rate
aP  

and having a prescribed energy consumption that must be 
completed between a specific time range. The operation 
of the HERs cannot be interrupted until its completion. 
Typical HERs in this class include appliances like coffee 
machine, rice cooker, toaster, and so on; 

•  4Ω : Set of HERs operating at the nominal power rate
aP  

and having a prescribed energy consumption that must be 
completed between a specific time range. The operation 
of the HERs can be interrupted and resumed later. Typi-
cal HERs in this class include appliances like washing 
machine, dish washer, etc.  

C.  Home Energy Management Model with Penetration of 
RTP and DCT 

Denote the energy consumption schedule for each control-
lable HER as:  

,1 ,2 ,[ , ,..., ]     i i i i TP P P i= ∀ ∈ΩP                      (2) 
 The power consumption schedule of N controllable appli-
ances can then be represented as a matrix with N T×  dimen-
sions, where the entry ,a tP  represents the power consumption 
of appliance a at time interval t. The net-power consumption 
of the home can be correspondingly represented as: 

  1[ ,..., ,..., ]h h h h
t TP P P=P                                (3) 

,    1:h mr pv
t t i t t

i
P P P P t T

∈Ω

= + − =∑                      (4) 

where mr
tP  is the must-run home load at time t (kW).  

Objective:  
The proposed objective of HEM in this study is to minimize 

the one-day RTP cost and the DCT cost increment that might 
(or might not) be charged at the end of the month:  

( ) ( )
1

min + max max( ) ,0
T

RTP h DCT h
t t

t
F P Pλ µ λ

=

 ′= ⋅ − ∑ P    (5) 

where max( )  is a function that returns the maximum value 
among the input numbers; P′  is the historically recorded peak 
power consumed over the previous days of the current calen-
dar month. There are two items in model (5). The first item is 
the one-day electricity cost charged by RTP; the second item 

is the incremental cost charged by DCT, which is calculated 
by comparing the maximum power consumed in the current 
day and P′ . µ  is a weighting coefficient. In this study, we 
propose to use following formula for µ : 

d
D

µ ω= ⋅                                     (6) 

where { }28,29,30,31D∈  is the number of days in the current 

month;  { }1,2,...,d D∈ is the index of the current day.  
 The rationale of model (5) is that the HEMS balances the 
two cost items charged by RTP and DCT, respectively. These 
two cost items are conflict to some extent. For example, cost 
charged by RTP can be significantly reduced by scheduling 
the operation of many HERs in the periods with low electricity 
prices; however, this may produce a peak power consumption 
that is potentially charged by DCT. Note that unlike the criti-
cal peak load tariff, DCT is not charged on daily basis, but 
only charges the peak power consumption over the whole 
month. This means if the peak power consumption of the cur-
rent day is lower than the previous peak power in this month, 
then no DCT will be charged; otherwise, the DCT might be 
charged or not be charged, depending on the operation results 
of remaining days in the month. Based on this fact, we pro-
pose to introduce a day index-related weighting coefficient µ  
to take into account the potential effect of DCT on the daily 
HER scheduling. The rational of µ  (Eq. (6)) is that if the 
scheduling result of the current day produces a larger peak 
power than previous days in the month, then the risk of being 
charged by DCT is considered in proportional to the number 
of remaining days in the month.             
Mandatory Constraints: 
  The HEM model is subjected to following constraints: 

1)  Operational constraints of HERs in 1Ω , i.e. an RBESS in 
this study. The operation of the RBESS must satisfy following 
constraints:  

  1
          0

,  1: 1
| |      0  

ess c ess ess l ess
ess t t t t
t ess ess d ess l ess

t t t t

E t P E t P
E t T

E P t E t P
η η

η η+

 + ∆ − ∆ >= = −
− ∆ − ∆ ≤

        

(7) 
            ,    1:ess ess ess rate

t tSOC E E t T= =                  (8) 
,       1:ess ess rate

tP P t T≤ =                    (9) 
min max      1:ess

tSOC SOC SOC t T≤ < =            (10) 

     ess dsr
tSOC SOC t T≥ =                   (11) 

Eqs. (7) and (8) model the variation of energy stored in the 
RBESS; constraint (9) specifies the RBESS’s maximum 
charging/discharging power; constraint (10) ensures the 
RBESS’s SOC is maintained within an allowable range; con-
straint (11) ensures the SOC level of the RBESS is larger or 
equal to a pre-specified threshold at the end of the day.  

2)  Operational constraints of HERs in 2Ω , i.e. an air condi-
tioning system in this study. We use the thermal dynamics 
model following in [16]: 

( )1=    1:out th ac
t t t tth th R P t T

C R
ϕ ϕ ϕ− − =

⋅
         (12) 
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  1:low up
t t Tϕ ϕ ϕ≤ ≤ =                       (13) 

 Constraint (13) restricts the indoor temperature to be con-
trolled within a comfort range.  

3) Energy consumption requirement of HERs in 3Ω  and  
4Ω : 

3 4
,

1
=    

T
rate req

a a t a
t

P s t E a
=

∆ ∀ ∈Ω ∪Ω∑                  (14) 

 4) Operation time range constraint of HERs in 3Ω  and 4Ω :  
 1 2 3 4

, 0     ,pmt pmt
a t a aP t t and t t a= < > ∀ ∈Ω ∪Ω      (15) 

5) Non-interruptible constraint of HERs in 3Ω : 
*

*

 /
3

, 1     
req rate

a a a

a

t E P

a t
t t

as
+

=

∀= ∈Ω∑                     (16) 

where *
at  represents the time interval when HER a is first time 

to be turned on.  
5) Minimum online time constraint of HERs in 4Ω , in order 

to protect mechanical device of the HERs in 4Ω : 
 ,min 4

,      on on
a t a aτ τ ∀ ∈≥ Ω                         (17) 

Constraints (7)-(17) model the individual operational con-
straints of the HERs. In addition to above individual opera-
tional constraints, in this study we proposed to consider the 
constraints representing operational dependencies among ap-
pliances, as presented in the next sub-section. 

D.  Modelling of Appliance Operational Dependency  
  It is easily observed from our life experiences that people 

may impose different operational dependency requirements on 
the household appliances. For example, in many mornings a 
user would require to start running the bread maker and coffee 
machine at the same time, so as to make his/her breakfast, i.e. 
bread and coffee. In literature, such operational dependencies 
among appliances are seldom considered. In this study, we 
propose to model following six modes of appliance dependen-
cies. 
Optional Constraints:  

1) Dependency mode 1:  The task of one appliance (denoted 
as x) must be started after the completion of the other appli-
ance (denoted as y) plus a time shift. This dependency can be 
formulated as following constraint: 

*1 *2+ +end start end
y xy x y xyt t t t t≤ ≤                        (18) 

2) Dependency mode 2:  The task of appliance x must be 
started after the start of appliance y plus a time shift. This de-
pendency can be formulated as: 

*1 *2+ +start start start
y xy x y xyt t t t t≤ ≤                        (19) 

3) Dependency mode 3:  The task of appliance x must be 
completed after the completion of appliance y plus a time 
shift. 

*1 *2+ +end end end
y xy x y xyt t t t t≤ ≤                          (20) 

4) Dependency mode 4:  The task of appliance x must be 
completed after the start of appliance y plus a time shift: 

*1 *2+ +start end start
y xy x y xyt t t t t≤ ≤                         (21) 

In Eqs. (18)-(21), start
at  and end

at  are starting and completion 
time of appliance a’s operation; *2

xyt  and *2
xyt  are constants 

where  *2 *1 0xy xyt t≥ ≥ . 

5) Dependency mode 5: The overlapped running time of 
appliances x and y cannot be larger than a threshold γ :   

{ } { }, ,0, 1: 0, 1:x t y tt P t T t P t T γ> = ∩ > = ≤    (22) 

6) Dependency mode 6: The overlapped running time of 
appliances x and y cannot be smaller than a threshold γ :   

{ } { }, ,0, 1: 0, 1:x t y tt P t T t P t T γ> = ∩ > = ≥    (23) 

 Above dependency modes can be considered as atomic 
modes. More complex appliance dependencies can be created 
by compositing above atomic modes. For example, to specify 
a dependency mode that K appliances must be operated se-
quentially, mode (18) can be repeatedly applied K times for 
the appliances. As another example, to model the appliance 
dependency that K appliances cannot be operated simultane-
ously (even if their allowable operation time ranges overlap 
with each other), mode (22) can be iteratively applied.  
 

IV.  SOLVING APPROACH 

The formulated model (5)-(23) (constraints (18)-(21)) are 
optional) is a mixed-integer, nonlinear, high dimensional 
combinatorial problem over a finite horizon. The nonlinear 
nature of the objective function (Eq. (5)) and constraints (12) 
and (17) does not lend itself for implementation with deter-
ministic programming solvers. For this purpose, a metaheuris-
tic optimization solver previously proposed by the authors – 
Natural Aggregation Algorithm (NAA) [17, 18], is used in this 
study to solve the model. Essentially, NAA is a biological 
intelligence inspired algorithm that imitates the self-
aggregation behaviors of group-living animals. The main fea-
ture of NAA is it uses a stochastic migration model to dynam-
ically migrate the individuals among multiple sub-populations, 
and uses both located and global searching strategies to search 
for the global/near-global solutions in the problem space. 
From a comparative viewpoint, NAA outperforms several 
other heuristic algorithms in solving a set of benchmark non-
linear functions and it shows satisfactory performances when 
dealing with power system problems (e.g. [21-23]).  

Each individual in NAA represents a potential HER sched-
uling solution, encoded as a vector with dimension of 

4

3 2 1( 1)pmt pmt
a a

a

T T t t
∈Ω

+ + Ω + − +∑ : 

• The first T  dimensions are continuous variables, repre-
senting the power consumption of the RBESS;  

• The next T  dimensions are continuous variables, repre-
senting the power consumption of the air conditioner;  

• The next 3Ω  dimensions are integer variables, repre-

senting the starting time interval of the appliances in 3Ω . 
The corresponding task completion time can be calculat-
ed based on the starting time and the appliance’s opera-
tion cycle;  

•  The last 
4

2 1( 1)pmt pmt
a a

a

t t
∈Ω

− +∑  dimensions are binary var-

iables, representing the ON/OFF status of appliances in 
4Ω ; each consequentially 2 1 1pmt pmt

a at t− +  dimensions rep-
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resent the ON/OFF status of the ith appliance within its 
permitted operation time range [ 1pmt

at , 2pmt
at ].     

In the evolution process of NAA, after each iteration, cer-
tain constraint handling strategies are applied on each individ-
ual. If the BESS’s SOC range constraint is violated in a time 
slot (constraint (10), the charging/discharging power of the 
BESS in that time slot is adjusted to the boundary value that 
makes the SOC to be the lower/upper allowable limit. If the 
indoor temperature limit is violated (constraint (13)), the status 
of the air conditioner is adjusted to be ON or OFF. If the min-
imum online/offline constraint of an appliance is violated in a 
time slot (constraint (17)), the ON/OFF status of the appliance 
in adjacent time slots is adjusted to satisfy the constraintre-
quirement. For other constraints (i.e. mandatory constraints 
(11), (14), and optimal constraints (18)-(23)), the “check-and-
abandon” strategy is applied. That is, if a constraint is violated, 
the individual is then assigned as a very large fitness value 
before entering into the individual selection process. The very 
large fitness value helps the algorithm to identify that the indi-
vidual is not feasible in the current iteration.  
 The overall optimization procedures are shown in Fig.2.  
 
 

V.  SIMULATION STUDY 

A.  Simulation Setup 
A smart home is simulated that consists of a 4kW-capacity 

rooftop solar panel, a RBESS, and multiple controllable 
household appliances. A normal summer day is considered; 
the scheduling horizon starts from 7am when the user starts 
one day life, and ends on 7am of the next day. The scheduling 
interval is set to 10 minutes. Therefore, there are totally 144 
scheduling time intervals. We use the RTP tariff based on [19], 
shown in Fig. 3. The DCT is set to be $8.03kW/month. The 
one-day forecasted solar power profile is shown in Fig. 4. 

 

 
TABLE I   RBESS MODEL 

Rated power Energy capacity Initial SOC 
4kW 8kWh 30% 

Charging/discharging efficiency minSOC  maxSOC  
0.9 10% 90% 

 
TABLE II 

CONFIGURATIONS OF CONTROLLABLE HOUSEHOLD APPLIANCES 

Name Operation 
duration 

Operation 
time range 

ca
aP  Interruptible 

Pool pump (PP) 3hours [10am, 6pm] 1.5 
kW YES 

Dish washer 
(DW) 1hour [8pm, 7am] 1kW YES 

Washing ma-
chine (WM) 1.5hours [10am, 7pm] 0.9 

kW YES 

Clothes dryer 
(CD) 1.5hours [10am, 7pm] 2.5 

kW YES 

Coffee machine 
(CM) 10minutes [7:30am, 

8:30am] 0.8kW NO 

Dehumidifier 
(DH)  20minutes [5pm, 8pm] 0.3kW NO 

Bread maker 
(BM) 10minutes [7:30am, 

8:30am] 0.5kW NO 
 

TABLE III 
PARAMETERS OF BUILDING AND AIR CONDITIONER 

Building Parameters 
RTH CTH 

18 ºC/ kW 0.525 kWh/ºC 
Air Conditioner Parameters 

Power range   
[0, 1.5KW] 23 ºC 25.5 ºC 

 

 

Configuration of the RBESS is shown in table I; settings of 
non-thermostatically controllable appliances are shown in ta-
ble II; parameters of the air conditioner and the building are 
shown in table III. The one-day must-run uncontrollable load 
profile of the home is extracted from the Australian “Smart 
Grid, Smart City” dataset [20]. Control parameters of NAA 
are set as follows: population size =5,000, maximum genera-
tion time =3,000 ， SN  =20; SCp =250; δ =1; localCr =0.9; 
α =1.2; globalCr =0.1. All programs are implemented in Matlab 
and executed on a DELL workstation with 128-G memory and 
two Intel Xeon processors.   

B.  Home Energy Management with Appliance Dependencies  
It is assumed that the user specifies the lifestyle-related ap-

pliance dependencies listed in table IV. The optimal operation  

Start

Setup HER models

Setup appliance 
dependency models

Input RTP and demand 
charge tariffs

Input historical peak 
consumption of the month 

and current day index

Encoding the initial 
population of NAA

Set the generation index 
(gen)=1

Evolve the population

Constraint handling for 
each individual

Fitness evaluating for each 
individual

Reach the maximum 
generation time?

NO. Set gen=gen+1

Output the optimal HER 
scheduling solution

YES

Start
 

 

Fig. 2. Workflow of the NAA based solving procedures 
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Fig. 3. 24-hour real-time pricing 
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TABLE IV 
LIFESTYLE RELATED APPLIANCE DEPENDENCIES 

Index Dependency Explanation  

1 +0 +0start start start
CM BM CMt t t≤ ≤   

(constraint (19)) 

The user requires to simultaneous-
ly make coffee and bread in the 

breakfast time  

2 
{ }
{ }

,

,

0, 1:

0, 1: 0

PP t

DW t

t P t T

t P t T

> = ∩

> = =
 

(constraint (22)) 

The user specifies the pool pump 
cannot be operated simultaneously 
with clothes dryer due to the big 

noise 

3 
+0end start

WM DHt t≤  

+0end start
CD DHt t≤  

(constraint (18)) 

The dehumidifier in the laundry 
cannot start to work until both 
washing machine and clothes 

dryer finish their tasks 

*Note: notations start
xt  and end

xt  representing the starting and completion time 
interval of the appliance ‘x’, where x is an abbreviation in table II. 
 

   

 
of the air conditioner, RBESS, and non-thermostatically con-
trolled appliances are shown in Figs. 5-7, respectively.  Fig. 5 
clearly show that by properly controlling the power consump-
tion of the air conditioner, the indoor temperature is well con-
trolled within the comfort range specified by the user (i.e. 
[23ºC, 25ºC]. From Fig. 3 and Fig 5, it can be seen that the 
time intervals of peak power consumption of the air condition-
er (i.e. larger than 1kW) are scheduled to avoid the peak RTP 
hours. Fig. 6 shows that the RBESS is scheduled to discharge 
to serve the home load in the morning and evening when there 
is little or no solar power.   From around 11am to around 3pm, 
the RBESS is charged by the surplus solar power.  In the even-
ing period, the RBESS is discharged to serve the air condi-
tioner load, must-run load, and some controllable appliances.  

 

 

 
Then in the mid-night, the RBESS is charged again to ensure 
the desired SOC low limit is achieved. Fig. 7 shows that as 
expected, all three dependency constraints of the household 
appliances are satisfied by the HEMS, indicating that the us-
er’s lifestyle requirements are sufficiently respected.  

We now evaluate the computational cost and solution quali-
ty of the proposed model with different NAA settings. In this 
experiment, the maximum generation time is fixed at 3,000 
and the population size varies between 1,000 and 5,000. The 
results are shown in table V. It can be seen that in all cases, 
the optimization solver ensures that there is no extra DCT cost 
increment. With the increase in population size, more optimal 
HER operation plans can be found to reduce the RTP cost and, 
as a trade-off, the execution time increases. When the popula-
tion size reaches 5,000 (i.e. the setting used in the case study 
reported above), the total execution time is around 6.5 hours.  
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Fig. 8. Net-power consumption profile 

7am 9am 11am 1pm 3pm 5pm 7pm 9pm 11pm 1am 3am 5am

Time

0

1

2

3

4

So
la

r P
ow

er
 (k

W
)

32

33

34

35

36

O
ut

do
or

 T
em

pe
ra

tu
re

 (C
)

 
 

Fig. 4. 24-hour solar power and outdoor temperature profiles 
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Fig. 5. Scheduling results of the air conditioner 
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Fig. 6. Scheduling results of the RBESS 
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Fig. 7. Scheduling results of household appliances 



 8 

TABLE V 
OPTIMIZATION RESULTS WITH DIFFERENT POPULATION SIZE SETTINGS IN 

NAA 
Population 

Size RTP Cost ($) DCT Cost 
Increment ($) 

Execution Time 
(minutes) 

1,000 3.40 0 74 
2,000 2.84 0 151 
3,000 2.68 0 227 
4,000 2.13 0 303 
5,000 1.91 0 391 

 
Considering the proposed application is a day-ahead HER 
scheduling application, this is assumed to be acceptable. 

 By combining the aforementioned HER scheduling plans, 
the overall net-consumption profile of the home is obtained, 
shown in Fig. 8. Since the current day index is sent to be 28, 
close to the end of the current month; the weight of the DCT 
cost is therefore large in model (5). As a result, the HEMS 
successfully control the maximum one-day net-consumption 
of the house to less than the recorded historical maximum 
power consumption of the current calendar month (i.e. 1.7kW), 
which helps the user to avoid the high risk of the large DCT 
penalty. The final total RTP cost of the home is $1.91, and 
DCT cost is zero.      

We further compare the proposed HEMS with three other 
benchmark cases:  
 (a) Case 1: the HEMS with appliance dependencies and 
DCT (the proposed HEMS in this paper); 
 (b) Case 2: the HEMS without appliance dependencies but 
with DCT; 
 (c) Case 3: the HEMS with appliance dependencies but 
without DCT.  
 (d) Case 4: The case without HEMS in which: the BESS 
does not be scheduled to serve the home load; each controlla-
ble appliance is switched on at the first time slot of its allowa-
ble operation time rage, and it is turned off when it finishes the 
task; the air conditioner is regularly switched on and off, for 
example, it remains in the ON status until the lower limit of 
the comfort indoor temperature range is reached).   
The cost comparison results obtained from the simulations are 
shown in table VI. For Case 2, that does not consider the ap-
pliance dependency, the home electricity cost can be slightly 
reduced even if without satisfying the user’s lifestyle require-
ments. Without the DCT, a significant reduction in RTP cost 
can be achieved. This will lead to much higher peak power 
levels than the recorded historical peak power of the current 
month, leasing to a $4.1 possible DCT cost increment. When 
there is no HEMS (Case 4), very large RTP and DCT costs are 
incurred. Due to absence of BESS and the lack of coordination 
for appliances’ operations, the household is charged $8.72 by 
RTP. This un-coordinated scenario leads to a peak power of 
5.6kW and to a consequent high DCT penalty ($31.3).  

We now compare the efficiency of the NAA solver on the 
proposed model with two other well-known heuristic algo-
rithms: Particle Swarm Optimization (PSO) and Differential 
Evolution (DE). The Matlab codes of PSO and DE are imple-
mented by the authors and used in our previous work [17, 18]. 
For all three algorithms, the population size and maximum 
iteration time are fixed as 5,000 and 3,000, respectively. Five 
trials are performed for each algorithm, and the averaged fit-
ness value (i.e. value of the objective function (5)) is obtained. 
The results are plotted in Fig. 9. It can be seen that the searchi- 

TABLE VI    
HOME OPERATION COSTS OF THREE CASES  

 RTP Cost DCT Cost Increment 
Case 1 $1.91 (21.9%) 0 (0%) 
Case 2 $1.77 (20.3%) 0 (0%) 
Case 3 $1.02 (19.7%) $4.10 (13.1%) 
Case 4 $6.72 $25.9 
*The values in brackets indicate the corresponding percentage of the cost 
items in the unscheduled case, i.e. Case 4.  
  

TABLE VII    
HOME OPERATION COSTS WITH DIFFERENT DAY INDEX SETTINGS 

Day Index RTP Cost DCT Cost Increment 
3 $1.12 (12.8%) $3.11 (9.9%) 

15 $1.54 (17.7%) $1.05 (3.3%)  
28 $1.91 (21.9%) 0 

*The values in brackets indicate the corresponding percentage of the cost 
items in the unscheduled case, i.e. Case 4 in table VI.  
 

 
-ng performance of PSO is significantly worse than DE and 
NAA. Although it seems that NAA stops improving the solu-
tion after around 1,700 iterations, it still generates better solu-
tion than DE. The average computational cost of NAA, PSO, 
and DE is 395, 373, and 378 minutes, respectively. Although 
NAA spends around 20 minutes more than PSO and DE, due 
to its relatively high optimization performance, it is acceptable 
for the day-ahead scheduling application considered in this 
paper.  

C.  Home Energy Management with Different Day Indices   
We fix the historical recorded peak power consumption of 

the current calendar month to be 1.7kW, and then assign three 
typical day indices to the simulation program: 3, 15, and 28, 
which represent an early, middle, and late day of the current 
calendar month, respectively. The home operation costs are 
shown in table VII. Note that in both table VI and VII, only 
the RTP cost is the deterministic cost; as fore the DCT cost, it 
just represents a possible increment compared with the histori-
cally recorded peak power in the current calendar month. In 
other word, if the overall peak power of the current month 
occurs in the later days of the current month, then for this cur-
rent day, only the RTP cost will be charged.   

As expected, when the current day is in the beginning of the 
month, the HEMS pays much more attention on minimizing 
the RTP cost. This is because there are still 27 days remaining 
in the current month, indicating a large chance that the month-
ly peak power will occur in the later days.  With the move of 
the day index, the effect of DCT is increasingly considered by  
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Fig. 9. Optimization performance comparison of the three algorithms 
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the HEMS. When the current day is in the middle of the month, 
the HEMS controls the DCT cost increment to be 1.05, signif-
icantly smaller than that when the current day index is 3. Fi-
nally, when the end of the month is approaching (day index of 
28), the HEMS ensures there is no any further DCT cost in-
crement, avoid the risk of incurring high DCT expense. This is 
reasonable, because the DCT rate is often several times higher 
than the TOU or RTP rate.  

D.  Sensitivity Study on the Weighting Constant 
The weighting constant ω  in Eq. (6) controls the considera-

tion degree of the DCT cost in the daily home energy man-
agement. The smaller value of ω  indicates the HEMS will 
pay more attention to the RTP cost. However, this would lead 
to high DCT penalty; the larger value of ω  can well controls 
the DCT cost. However, recall that the DCT cost is charged 
for the peak power of the whole month instead of one day, too 
large value of ω  will therefore make the HEMS overrates 
DCT’s impact and result in unnecessary RTP cost.  

Above justification is reflected in the sensitivity study re-
sults reported in Fig. 10, where we set the current day index as 
28 and observe the optimized RTP cost and DCT cost incre-
ment under different settings of ω . Fig. 9 clearly shows that 
with the increase of ω , the one-day DCT cost increment de-
creases while the one-day RTP cost increases. Therefore, the 
choice of the value of ω  reflects the compromise between the 
daily basis RTP cost and monthly basis DCT cost.  

E.  Long Term Evaluation 
One-month home energy management is simulated. The 

one-month home load profile is modified from an Australian 
household in the Australian “Smart Grid, Smart City” dataset, 
shown in Fig. 11.  One-month solar radiation is obtained from 
the SoDa database [29] and is converted to the solar power 
output according to model (1), shown as Fig. 12. The control-
lable appliances listed in table II are then scheduled day-by-
day, subjected to model (5). Based on the life experience of an 
Australian family (see the acknowledgement section), the pool 
pump is set to run once every two days; the washing machine 
and clothes dryer are set to run 4 times per week; other con-
trollable appliances are operated once every day. Two settings 
of the weighting constant ω  is used: a small value ( 0.4ω = ) 
and a large value ( 1.5ω = ), respectively. For comparison pur-
puses, the home operation result under the case of no HEMS 

(i.e. no RBESS and no appliance scheduling) is also calculated 
and listed.  

The peak power consumption in each day is shown in Fig. 
13, and the relevant one-month optimization result is shown in 
table VIII.  The results show that when there is no home ener-
gy management, very high values of daily peak power con-
sumption are resulted, and these lead to high RTP cost and 
DCT cost over the month. With the penetration of RBESS and 
appliance scheduling, the household’s electricity cost is signif-
icantly reduced. With 0.4ω = , the peak power over the month 
occurs in the 25th day (2.6kW), leading to $20.9 DCT cost and 
$31.5 RTP cost. With a value of 1.5ω = , the monthly peak 
power occurs in the 7th and 11th day (2.4kW) and this produces 
lower DCT costs ($18.4) and higher RTP cost ($36). These 
results confirm that the choice of the value of ω  reflects the 
compromise between the RTP cost and DCT cost).  
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Fig. 13. Daily household peak power consumption under 3 cases 
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Fig. 12. One-month solar radiation  
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Fig. 11. One-month household must-run load  
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Fig. 10. Sensitivity study of weighing constant  
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TABLE VII    
ONE-MONTH COST EVALUATION UNDER THREE CASES 

 RTP Cost DCT Cost Total Cost 
0.4ω =  $31.5 $20.9 $52.4 
1.5ω =  $36.0 $18.4 $54.6 

Without HEMS $110.6 $38.1 $148.7 
 

VI.  CONCLUSION AND FUTURE THOUGHTS 

This paper proposes a home energy management system 
that considers the penetration of both real-time pricing and 
demand charge tariff. The HEMS also takes into account the 
operational dependencies of appliances, which reflect the us-
er’s lifestyle requirements. Numerical studies are conducted, 
which show compared with the case that is only with RTP, 
DCT poses extra impact on the home energy management that 
must be sufficiently considered. In the meantime, the appli-
ance dependencies are also unneglectable factors when design-
ing user-oriented HEMSs.      

As presented, this is an ongoing discussion in industry to 
apply DCT to the residential sector. Therefore, the work in 
this paper can be considered as an academic reference for 
DCT practice in residential buildings.  
 Currently, the authors are working on extending the home 
energy management to the residential community scale by 
considering the penetration of DCT. In this scenario, we con-
sider the DCT is charged based on the peak power consump-
tion of the whole residential community, and all units share 
the DCT cost based on their power consumption proportions. 
Since compared with the industrial customer (which is the 
current application domain of DCT), a single residential unit’s 
power capacity would be too small, applying DCT on com-
munity scale would be a possible option in the practice of 
DCT in the residential sector.     
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