
IET Generation, Transmission & Distribution

Research Article

Decomposition-based approach to risk-averse
transmission expansion planning considering
wind power integration

ISSN 1751-8687
Received on 9th September 2016
Revised 21st December 2016
Accepted on 23rd December 2016
E-First on 27th September 2017
doi: 10.1049/iet-gtd.2016.1439
www.ietdl.org

Jing Qiu1,2, Junhua Zhao2,3 , Dongxiao Wang4, Zhao Yang Dong5

1School of Electrical and Information Engineering, University of Sydney, Camperdown, NSW 2006, Australia
2School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
3School of Science and Engineering, the Chinese University of Hong Kong (Shenzhen), Longgang, Shenzhen, Guangdong, 518172, China
4Centre for Intelligent Electricity Networks, the University of Newcastle, Callaghan, NSW 2308, Australia
5School of Electrical Engineering and Telecommunications, the University of New South Wales, Kensington, NSW 2052, Australia

 E-mail: junhua.zhao@outlook.com

Abstract: The increasing penetration of wind power (WP) and demand response (DR) programs into modern power systems
poses more challenges on transmission expansion planning (TEP). To ensure the economical, secure and reliable operations of
power systems, this study presents a risk-averse TEP framework. Instead of using the deterministic security criterion, an
insecurity risk cost (RC) is proposed to provide network planners with the insight into the problem, options and future
implications in decision making. Specifically, this RC can quantify the system security degree, considering the probability and
the severity of contingencies. Meanwhile, the economic value of DR is modelled and incorporated into the optimal operation
solutions. Moreover, to enhance the computational efficiency, an iterative solution algorithm based on the Benders
decomposition is developed to solve the formulated TEP problem. The proposed approach is numerically verified on the
Garver's 6-bus, IEEE 24-bus RTS, and 2383-bus polish systems. Case study results demonstrate that the proposed approach
can effectively investigate the impacts of large-scale integration of WP and DR on system operations and planning. Moreover,
the proposed risk-averse approach is economically efficient and more robust to stochastic variations.

1௑Introduction
Transmission expansion planning (TEP) refers to determining
when, where and what type of new transmission lines should be
built in order to satisfy the growing energy demand [1]. The main
objective of TEP in a deregulated power industry is to provide non-
discriminatory and competitive market conditions to all
stakeholders, while maintaining the system reliability [1, 2]. TEP is
a complicated decision-making process, because there are a variety
of types of uncertainties that should be taken into account.
Generally speaking, the uncertainties can be classified into two
main categories [2, 3]: () random uncertainties, such as load
growth, availability of system components; (ii) non-random
uncertainties, such as location of new generators and policy
changes.

Moreover, to achieve energy sustainability and mitigate climate
change, renewable energy such as wind power (WP) has
proliferated greatly in the power generation portfolio over the past
decades. Bulk injection of WP into power systems can cause
bottlenecks in transmission lines. Meanwhile, the intermittency and
uncertainty of WP can cause security issues. Variations in wind
outputs can often be compensated by adjusting the outputs of the
conventional power generators (i.e. regulation service providers).
Following the applications of smart grids, demand response (DR)
programs have attracted significant attention in terms of balancing
WP and enhancing system efficiency [4]. DR programs can be
categorised into price-based DR (e.g. time-of-use tariff) and
incentive-based DR (IBDR) (e.g. direct load control). On the other
hand, when DR reaches a critical market level, the uncertainty of
consumer behaviour makes TEP more challenging [5]. Thus the
influences of WP and DR on system security and adequacy should
be comprehensively investigated.

In addition, to protect the power system against cascading
outages or any form of instability, the security rule in many
countries defines that the system can withstand the loss of any
single component (i.e., N − 1 secure) and sometimes the loss of a
selected combination of two components (i.e. N − 2 secure) [6]. In

most cases, the system operators only check a set of credible
contingencies, since studying all possible contingencies is
practically impossible [7]. The conventional security criterion only
considers a single contingency and security is a deterministic
criterion. This means that all contingencies are equally treated and
each should satisfy the security requirement in system operations
[8]. The conventional approach can only provide a binary answer
to the system security, i.e. either secure or insecure. More
importantly, the deterministic approach cannot recognise the
inherent probabilistic nature of system behaviours, such as
customer demands and component failures [8]. Therefore, there is
an interest to study the insecurity risk involved in transmission
investment in the future, yielding risk-averse TEP [9].

In the literature, there are many studies addressing TEP
uncertainties (e.g. load or WP variations). For instance, reference
[10] has proposed a stochastic coordination of generation and
transmission expansion planning model. Monte–Carlo (MC)
simulations are used to capture the uncertainties of random outages
of system components, as well as load forecast errors. In [11], TEP
is formulated as a renovated mixed integer linear programming
problem. The line investment cost (IC) and load forecast errors are
considered as planning uncertainties. A robust optimisation
methodology is applied to assess different levels of uncertainty and
conservation. In [12], the uncertainties of remote WP and load are
represented by two dependent random variables. They are
considered into the two-stage stochastic optimisation model, which
is then solved by the sequential approximation approach. In [13],
the interactions between large-scale WP integration and TEP are
analysed. The co-optimisation of energy and ancillary services is
solved by the Benders decomposition technique. The authors use
the MC simulations to model the various uncertainties in system
operation and planning, but do not specify what types of
uncertainties they have considered. In [14], the impact of high WP
penetration on security and operations in the reserve market has
been investigated. Moreover, in some studies, TEP only deals with
the normal condition, and the worst case is modelled (i.e. peak load
and no generation rescheduling), such as [15, 16]. On the other
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hand, there are some TEP studies addressing the security issues
under N − 1 contingencies, such as [17, 18]. Reference [17] has
included the probabilistic reliability criterion into TEP. In [19], a
multi-stage security constrained TEP model is proposed, and is
solved by a mixed-integer linear programming approach. In [20] a
TEP model is proposed to minimise the IC and the curtailed wind
energy over the planning period. A probabilistic method based on
clustering is used for determining the load and WP models.
Unfortunately, the above-mentioned models fail to investigate the
impacts of emerging DR on system economy and reliability.
Furthermore, some studies contemplate the risk in TEP, such as
[21, 22]. In [21], a TEP model based on risk/investment is
proposed. Results are compared with those obtained by the
scenario analysis method. In these studies, expected energy not
supplied (EENS) or other similar reliability measures are
calculated by minimising the total load curtailment repeatedly
while considering generation re-dispatch (i.e. corrective control
(CC) actions) under different normal and contingency scenarios.
Thus the optimality and feasibility of CC actions are not well
addressed, e.g. generation ramping constraints or re-dispatch costs
are not considered. In [23], adaptation cost has been chosen as a
flexibility measure of planning alternatives. In [24], a risk-based
TEP approach is proposed to address deliberate outages. Risk
characterisation is implemented through the minimax weighted
regret paradigm. In addition, investigating the impact of DR on
TEP is relatively a new topic, a few studies are found such as [1,
4]. Li et al. [4] presents a probabilistic TEP model considering
large-scale wind farms integration and IBDR. The wind speed
correlation between wind farms is modelled by a multi-state wind
farm model. However, these references have not taken into account
the upward DR (load increment). As a result, in their models, the
DR's role in balancing WP fluctuations (e.g. underestimated WP
outputs) is neglected.

To bridge the research gaps in the literature, in this paper a risk-
averse TEP model is proposed for power systems with large-scale
integration of WP and DR. Compared with the existing works in
the literature, the novel contributions and salient features are
fourfold: (i) A straightforward risk index is proposed to
quantitatively measure the system static security. The probabilistic
nature is captured, and a severity function based on generation
rescheduling and load curtailment (i.e. CC actions) is developed.
(ii) The economic value of DR is modelled, and its impact on
system security and adequacy has been investigated. (iii) The
insecurity risk cost (RC) and the DR cost (DRC) are optimally
integrated into the objective function and a stochastic planning
framework is developed. This framework can coordinate the
optimal planning and operation solutions, and gives the network
planners the ability to hedge against the risks in relation to
uncertainties. (iv) Based on the Benders decomposition technique,
the formulated TEP problem is decomposed into a mater problem
and two salve subproblems, and they are solved iteratively until
there is no violation. In case studies, the proposed approach is
verified on the Garver's 6-bus, IEEE 24-bus RTS and 2383-bus
Polish systems. Comparative studies are also undertaken.

The remaining paper is organised as follows: in Section 2,
models of the studied uncertainties are introduced, followed by the
proposed risk-averse TEP model in Section 3. The solution
algorithm is explained in Section 4. Section 5 presents numerical
simulations to demonstrate the effectiveness of our approach.
Finally, conclusions are given in the last section.

2௑Uncertainties modelling
2.1 Demand response model

This paper only focuses on the IBDR. Incentives are paid to
customers who reduce or increase their energy consumption when
requested, and customers participate in the market dispatch through
DR bids. For instance, power demands of electric vehicle charging/
discharging, and heating ventilation and air conditioning are elastic
and can be considered as IBDR. The economic values of DR
resources are modelled as follows.

It is assumed that the DRC y and the load adjustment PDR

(including PDR
−  and PDR

+ ) can be represented by a linear function
given in (1) [25, 26]. Note that PDR

−  means load decrement, while
PDR

+  means load increment.

y = ℓ2 + ℓ1PDR (1)

where y is the price at which a consumer is willing to accept in $/
MWh, ℓ2 is the intercept (in $/MWh), and ℓ1 is the slope (in $/
MW2h).

To avoid creating new demand peaks, the maximum demand at
each demand bus is introduced below.

PD − PDR
− ≥ 0

PD + PDR
+ ≤ PD

Max
(2)

PDR
− ≥ 0, PDR

+ ≥ 0 (3)

where PD
Max denotes the upper bound of demand; PD denotes power

demand.
The bid price CDR of load adjustment (load increment and

decrement) of customers can be modelled by a quadratic form in
(4) [27, 28]. Equation (5) states that negative PDR means load
increment; while positive PDR means load decrement. Equation (6)
states the maximum DR ratio ρ. In addition to the quadratic form
of DRC as reported in [27], other mathematical forms are also
found, such as linear, exponential and logarithmic functions [29].
The bid uncertainty of DR can be modelled by the Gaussian
distribution [4].

CDR =
1
2

ℓ1PDR
2 + ℓ2PDR (4)

PDR =
PDR

− , if PDR ≥ 0

− PDR
+ , else

(5)

PDR

PD
≤ ρ (6)

2.2 Other uncertainties

In this paper, DR bids, load forecast errors, WP outputs and
component availability are considered as uncertainties. The
uncertainties are represented by probability density functions
(PDFs). Wind speed is approximately modelled by the Weibull
distribution [30]. For simplicity, the spatial and temporal
correlation between wind farms is not considered. The WP output
is calculated using the power-speed curve [30]. It is worth
mentioning that in addition to the Weibull distribution, the Kaimal
turbulence model can also be used to model the wind speed.
Reference [31] has proposed a high-order sliding-mode control
strategy to regulate the WP outputs. The proposed strategy in [31]
is robust to the parametric uncertainties of the wind turbine.
Furthermore, load forecast errors and IBDR bid are modelled by
the Gaussian distribution [4]. Forced outage rates (FORs) are
modelled by the Binomial distribution [8]. The mathematical
formulations of these PDFs are common in the literature and they
are not given in detail. For example, a scenario can be: ‘for t = 1,
WP output is 100 MW, load level is 2500 MW, DR bid price is
$70/MWh, and all components are available.’ Moreover, the
2m + 1 estimate scheme is employed to perform probabilistic
optimal power flow (POPF), which simulates the market dispatch.
Its technical details can be found in [32], and is hence not repeated
here.
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3௑Risk-averse TEP model
3.1 Objective

To better capture the effect of DR, the proposed TEP model is
static and chronological (i.e. TEP for a single stage and one year is
modelled by 8760 h) [18]. The objective function comprises four
parts: line IC, DRC, power generation cost (GC), and insecurity
RC, as seen in (7). Mathematically, risk value is calculated as the
summation of the products of the probability and the severity of a
threat event [33]. Thus the insecurity RC is calculated based on the
probabilities and the severities of contingencies.

∑
(i, j) ∈ ΩN

CLi jηi j + ∑
t = 1

8760

∑
i = 1

ΩD

CDR 0it + ∑
t = 1

8760

∑
i = 1

ΩG

COit + ∑
t = 1

8760

Rt (7)

where subscript 0 denote the normal condition, subscript t denotes
time; subscripts i or j denote bus; ΩN, ΩG, ΩD denote sets of all
buses, generators, demand buses, respectively.

The detailed calculations of (7) are given below.

CLi j = LCF ⋅ Li j (8)

CDR0it =
1
2

ℓ1PDR0it
2 + ℓ2PDR0it, i ∈ ΩD (9)

COit = a1iPG0it
2 + a2iPG0it + a3i, ∀i ∈ ΩG (10)

Rt = ∑
k = 0

K

Prkt ⋅ CCkt (11)

CCkt =

∑
i ∈ ΩG

αGi ⋅ PGkit − PG0it
2, if ∑

i ∈ ΩD

PDt0i = ∑
i ∈ ΩD

PDkit

∑
i ∈ ΩD

CDRkit + VCR ⋅ ∑
i ∈ ΩD

Pkit
Curt, else

(12)

∑
i ∈ ΩG

αGi ⋅ PGkit − PG0it
2 = ∑

i ∈ ΩG

αGiPGkit
2 − 2αGiPG0itPGkit

+ αGiPG0it
2 (13)

where LCF denotes line cost factor (a constant); Li j is the length
between i − j; ηi j denotes the number of lines should be built
between i − j; a1i, a2i, a3i are generator cost coefficients; PG0it, PGkit

denote thermal power outputs in normal and contingency
conditions, and they are subject to ramping constraints; Prkt

denotes the probability of contingency k at time t; K denotes the
total number of credible contingencies considered; CCkt is the CC
cost function; PDkit

Curt denotes the involuntary load curtailment in
contingency k at time t bus i; VCR denotes value of customer
reliability. Note that when performing the deterministic security
evaluation, Prtk is set to be 1 as a constant. In practice, this
probability is subject to the impacts of line length or voltage level,
weather, aging and geographic locations [15]. Equation (12) is the
severity function of contingencies, which is calculated by the cost
of CC actions such as generation rescheduling and load
curtailment. Note that the severity function in (12) is not unique,
the approach developed in this paper can easily be adapted if other
severity functions are adopted. The upper part in (12) means
generation rescheduling is used alone, while the lower part means
load curtailment is used (including DR and involuntary load
curtailment). Note that in (12) the load curtailments under normal
and contingency conditions have been all considered (i.e.
k = 0, 1, 2, …, K). As seen in (13), generation rescheduling cost is
in the same form as the GC function (10) since αGi and PG0it are

scalars, with a1i, a2i, a3i being replaced by αGi, −2αGiPGt0i, αGiPGt0i
2 .

Other formulations of CC cost can also be used depending on the
practical needs. In this paper, CC is just a term used to describe
generation re-dispatch and load curtailment, according to [34]. The
optimality and feasibility of CC actions are considered, in order to
quantify the severity of contingencies. In the meantime, EENS (i.e.
the reliability measure) is calculated based on the mean value of
load curtailments under both normal and contingency conditions.
To sum up, the control and the operation of the system are both
implemented at the long-term TEP level. They are used to evaluate
the security and adequacy of the network in the long-term.

3.2 Constraints

The constraints are below, including nodal balances, generator
capacity constraints, branch flow constraints, ramping constraints,
DR and load curtailment constraints, and constraints of decision
variables.

(i) Power balance constraint

∑
i, j ∈ ΩN

S0i jt + ∑
i ∈ ΩG

PG0it + PGW0it = ∑
i ∈ ΩD

PD0it − P0it
Curt − PDR0it

(14)

∑
i, j ∈ ΩN

Ski jt + ∑
i ∈ ΩG

PGkit + PGWkit = ∑
i ∈ ΩD

PDkit − Pkit
Curt − PDRkit

(15)

where subscripts t, k, i or j denote time, kth contingency, and bus,
respectively; PGW denotes WP output; S denotes power flow; PD

denotes power demand. Equations (14) and (15) state node balance
in normal (pre-contingency) and post-contingency conditions,
respectively. Note that in order to avoid repeated information,
subscripts 0 or k are removed in the constraints below.
(ii) Generator capacity constraint

0 ≤ PGit ≤ PGi (16)

0 ≤ PGWit ≤ PGWi (17)
(iii) Branch flow constraint

Si jt − γi j ηi j
0 + ηi j θit − θ jt = 0 (18)

Si jt ≤ ηi j
0 + ηi j Si j (19)

(iv) Ramping constraint

PGi, t − PGi, t − 1 ≤ RUi

PGi, t − 1 − PGi, t ≤ RDi

, i ∈ ΩG (20)

(v) DR or load curtailment constraint

PDit − PDRit
− ≥ 0

PDit + PDRit
+ ≤ PDit

Max
, i ∈ ΩD (21)

PDRit
− ≥ 0, PDRit

+ ≥ 0 (22)

PDRit

PDit
≤ ρit, i ∈ ΩD (23)

0 ≤ PDRit ≤ PDit, i ∈ ΩD (24)

0 ≤ Pit
Curt ≤ PDit, i ∈ ΩD (25)

(vi) Decision variable constraint

0 ≤ ηi j ≤ ηi j, ηi j is integer, i, j ∈ ΩN (26)

where ∙  denotes the upper bound; η
0, γ are the number of

existing lines and susceptance; θ denotes phase angle; RU, RD
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denote the up and down ramping limits of thermal power
generators.
(vii) Reliability constraint

∑
k = 0

K

∑
t = 1

8760

∑
i ∈ ΩD

Pkit
Curt = EENS ≤ EENS (27)

where EENS denotes EENS, which is a reliability measure.

4௑Solution algorithm
4.1 Decomposition strategy

The original mixed integer non-linear programming problem in
Section 3 is decomposed into a master problem and two slave
subproblems, and they are solved iteratively until no violation
exists. It is worth mentioning that for non-convex problems, the
decomposition methods cannot always guarantee a global optimal
solution. Nevertheless, a feasible solution that is close to the
optimal one can be expected [35–37]. As seen in Fig. 1, the master
problem is an integer programming problem that identifies the
optimal expansion plans. The slave subproblems identify the
optimal operation and assess the system security with the planning
schemes given by the previous master problem. If any violation

exists, Benders cuts (or similar optimality and security cuts) are
generated and added to the master problem for solving the next
iteration. These cuts are mainly imposed by line flow limits, since
when overflow occurs, load at some buses may be curtailed,
including voluntary and involuntary load curtailments. The flow
chart of the applied point estimation algorithm is illustrated in
Fig. 2 

4.2 Optimal operation subproblem 1

The solution of the optimal operation subproblem measures the
total operation cost (power generation and DRCs) for the plan
identified by the master problem under the normal condition.

min O1 = min ∑
t = 1

8760

∑
i = 1

ΩG

COit + ∑
t = 1

8760

∑
i = 1

ΩD

CDR 0 it (28)

The calculations of CDR0it and COit are given in (9) and (10).
The constraints are as follows.

∑
i, j ∈ ΩN

S0i jt + ∑
i ∈ ΩG

PG0it + PGW0it = ∑
i ∈ ΩD

PD0it − P0it
Curt − PDR0it

(29)

S0i jt − γi j ηi j
0 + ηi j

n θ0it − θ0 jt ≤ 1 − χi j ⋅ DF (30)

S0i jt ≤ ηi j
0 + ηi j

n Si j (31)

where ηi j
n  is the solution obtained at the nth Benders iteration; DF is

a disjunctive factor and χi j is a binary variable. If χi j is 1, meaning
a power line exists or is to be reinforced, then the DC power flow
equation is in effect; otherwise, if a power line is in contingency or
not planned, χi j is 0, then the disjunctive factor ensures the
constraint is not binding.

In addition, constraints (16)–(17), (20)–(27) must be met, with a
superscript 0 denoting the normal condition (pre-contingency).

4.3 Security assessment subproblem 2

The security assessment subproblem is to minimise the total
insecurity risk under all credible contingencies considered.

min O2 = min ∑
t = 1

8760

Rt (32)

The calculations of Rt is given in (11) and (12)
The constraints are as follows.

∑
i, j ∈ ΩN

Ski jt + ∑
i ∈ ΩG

PGkit + PGWkit = ∑
i ∈ ΩD

PDkit − Pkit
Curt − PDRkit

(33)

Ski jt − γi j ηi j
0 + ηi j

n θkit − θk jt ≤ 1 − χi j ⋅ DF (34)

Ski jt ≤ ηi j
0 + ηi j

n Si j (35)

In addition, constraints (16)–(17), (20)–(27) must be met, with a
superscript k denoting the contingency.

4.4 Master problem

The master problem takes into account the optimality and security
cuts formulated at the all previous iterations and identifies the new
lines to build at iteration. This problem is to minimise the IC of
building new lines subject to constraints provided by the
subproblems. The master problem is as follows.

Fig. 1௒ Proposed decomposition strategy for TEP
 

Fig. 2௒ Flow chart of the applied POPF
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min ∑
(i, j) ∈ ΩN

Ci jηi j + SV1 + SV2 (36)

subject to

O1
n − ∑

(i, j) ∈ ΩN

δi jt
n

ηi j − ηi j
n ≤ SV1, n = 1, 2, …, N (37)

O2
n − ∑

(i, j) ∈ ΩN

δi jt
n

ηi j − ηi j
n ≤ SV2, n = 1, 2, …, N (38)

SV1 ≥ 0; SV1 ≥ 0 (39)

where O1
n, O2

n denote the solutions of subproblems 1 and 2 of the
previous iteration n; δi jt

n  is the sensitivity of the optimal values O1
n

and O2
n with respect to the decision variable ηi j

n ; SV1, SV2 are the
slack variables. Equations (37) and (38) are optimality and security
cuts, respectively.

The calculation of sensitivity factors is given by

δi jt = πi jtSi j (40)

where πi jt denotes the Lagrange multipliers of (14) and (15)
associated to constraints (29) and (33) in optimal operation and
security assessment subproblems.

For the DC power flow model, the sensitivity factor is given:

δi jt = ∑
(i, j) ∈ ΩN

πit − π jt θit − θ jt γi j (41)

The probabilistic formulations of the cuts added to the master
problem are as follows:

E(O1
n) − ∑

(i, j) ∈ ΩN

E(δi jt
n ) ηi j − ηi j

n ≤ SV1, n = 1, 2, …, N (42)

E(O2
n) − ∑

(i, j) ∈ ΩN

E(δi jt
n ) ηi j − ηi j

n ≤ SV2, n = 1, 2, …, N (43)

5௑Case studies
5.1 Experiment setting

The proposed risk-averse TEP approach is tested on the Garver's 6-
bus, IEEE 24-bus RTS and 2383-bus Polish systems. Network data
can be found in [38–40], respectively. FORs of power generating
units and transmission lines for the Polish system are assumed to
be 0.02 and 0.01, respectively. We assume that the network needs
to be expanded for the next five years and the annual load growth
rate is 5%. The capacity of new power lines is 120 MW, and up to
three lines are allowed on each corridor. The line IC is assumed to
be 55 M$/100 km. DR resources are located at all load buses and
the mean of bid price can be found in [4]. The maximum ratio of
DR is 10%. The cut-in, cut-out and rated speeds of wind turbines
are 4.6, 25.8 and 14.6 m/s. WP units are assumed to have identical
generating turbines with a 2 MW rated capacity. In the base case,
wind speed, load and bid uncertainties are assumed to be 3% (i.e.
σ /E = 3%). VCR is set to be $25,950/MWh [41]. The relative gap
tolerance for the proposed Bender's decomposition algorithm is
10−4. The model is solved by CPLEX using a PC with Intel Core
i7-6600 CPU @ 2.80 GHZ with 8.00 GB RAM.

5.2 Garver's 6-bus system

As seen in Fig. 3, the original 6-bus system is composed of three
thermal generators and one WP unit, seven branches (solid lines),
and three loads. The peak load is 255 MW and total generation
capacity is 480 MW. Three cases are used to demonstrate the
effectiveness of the proposed approach.

Case 1: The proposed risk-averse TEP model.
Case 2: A risk-averse TEP model without DR.
Case 3: A deterministic security-constrained TEP model with DR.

The final planning scheme identified by the proposed approach
for cases 1–3 is marked in Fig. 2 (dotted lines). The average daily
load profiles for cases 1–3 are illustrated in Fig. 4. Compared with

Fig. 3௒ One-line diagram of 6-bus system and identified planning schemes
for cases 1–3
(a) Planning schemes identified in case 1, (b) Planning schemes identified in case 2,
(c) Planning schemes identified in case 3

 

Fig. 4௒ System daily average load profiles for cases 1–3
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case 2, the load profiles for case 1 and 3 are more flat, since DR is
used to provide ancillary services to balance WP and demand
variations. Increment DR mainly occurs in the early morning, since
WP fluctuations are bigger during that time in our studies.
Decrement DR mainly occurs in peak hours (i.e. shaving peak
demand), during which GC is relatively high. In addition, to protect
the system against security issues, more DR is used in case 1
compared with case 3. Moreover, the detailed results of costs,
including IC, GC, DRC, insecurity RC and total cost, are compared
in Fig. 5. We can see that the deterministic security criterion in case
three leads to conservative solutions and higher IC, GC and total
cost are observed. This observation is also true when the WP
penetration is increased to 100 MW in Fig. 6. Besides, higher WP
penetration requires higher IC, meaning more lines are built to
absorb the wind generation capacity. DRC also sees slight rises in
cases 1 and 3, because more DR will be used to offset the
fluctuations of WP, particularly when thermal units are constrained
by their ramping limits. However, GC for all three cases decreases
when WP capacity is increased from 50 MW in Fig. 5 to 100 MW
in Fig. 6. Overall, the total costs for cases 1–3 all increase for
higher WP penetration (increasing by 15, 24 and 20 M$ for cases
1–3, respectively).

Furthermore, we have given results of total costs, total WP
curtailment (WPC), peak demand, total energy consumption, and
EENS for different WP penetration levels in Tables 1 and 2. Note
that EENS is calculated by minimising the total involuntary load
curtailment under normal and contingency conditions
(EENS = ∑k = 0

K ∑t = 1

8760 ∑i ∈ ΩD
Pkit

Curt). The planning criterion in this
paper is defined as that EENS should be less than 0.02% of total
annual energy consumption. In Table 1, all cases satisfy the
reliability criterion under N − 1 conditions, while only case 1 can
still meet it when N − 2 conditions are considered (0.0187% < 
0.02%). Moreover, in case 1, EENS is less than 0.02% under N − 1
and N − 2 conditions when WP capacity is 100 MW in Table 2
(0.0169% < 0.02% and 0.0198% < 0.02%). This demonstrates that
the proposed approach can help to build a stronger network that
can survive multiple contingencies with high WP penetration.

Furthermore, from Tables 1 and 2, we can see that the changes in
peak demands and total energy consumption are not evident for all
three cases. The total WPC for case 2 is the largest (12986.89 
MWh) since DR is not considered. This implies that DR plays an
important role in helping WP integration. 

5.3 IEEE 24-bus RTS system

The IEEE 24-bus RTS system is composed of 10 thermal stations,
38 branches and 20 loads. The peak load is 3404 MW and the total
generation capacity of thermal units is 6000 MW. We assume that
three WP farms are located at buses 2, 4, and 20, and they have an
equal capacity at 200 MW (total WP capacity is 600 MW). The
three cases in Section 5.2 are also used.

In addition, the advantages of using POPF, i.e. the point
estimation method, are demonstrated by comparing it to the
stochastic TEP, i.e. the MC simulation method. The convergence
threshold of MC simulations is defined as the ratio of the standard
deviation against the expected value is below 0.05. As seen in
Fig. 7, the probability distributions of the total GC and DRC
obtained by the two methods are quite similar. This means that the
point estimation method can achieve an acceptable accuracy.
Moreover, we have run the simulations using the two methods for
50 times, and the computational performance is compared by four
indicators: the average (aver.), standard deviation (std.), minimum
(min.), and maximum (max.) solution time. As seen in Table 3, the
average simulation times for the point estimation and MC
simulation methods are 1348 and 3594 s. Therefore, from the
computational perspective, the point estimation method is much
more efficient. 

The identified planning schemes for cases 1–3 are given in
Table 4. As seen, in order to alleviate network congestion, more
lines are needed at parts where the meshed networks are weak. In
generally, fewer lines are needed for case 1 and IC for case 1 is the
lowest. 

Fig. 8 illustrates the daily average WP output and curtailment.
The deterministic approach in case 3 tends to use less WP
compared with case 1, because the WP intermittency poses a

Fig. 5௒ Results of costs for cases 1–3 with 50 MW WP capacity
 

Fig. 6௒ Results of costs for cases 1–3 with 100 MW WP capacity
 

Table 1 Result comparison for cases 1–3 with 50 MW WP capacity
Case# Total cost, M$ WPC, MWh Peak demand, MW Total energy, GWh EENS

N − 1, % N − 2, %
1 243.86 4235.68 293.12 970.21 0.0154 0.0187
2 276.78 9698.65 325.45 1000.05 0.0198 0.0365
3 338.84 5645.17 296.70 970.77 0.0186 0.0228

 

Table 2 Result comparison for cases 1–3 with 100 MW WP capacity
Case# Total cost, M$ WPC, MWh Peak demand, MW Total energy, GWh EENS

N − 1, % N − 2, %
1 257.96 4322.36 293.12 980.27 0.0169 0.0198
2 300.78 12986.89 325.45 1010.09 0.0365 0.0594
3 358.84 6896.61 296.70 980.81 0.0278 0.0381
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significant insecurity risk on system operation and planning.
Meanwhile, without DR, more WP is curtailed for case 2, since the
thermal units are constrained by their ramping down limits when
WP suddenly increases. Moreover, the detailed results of peak day
GC and DR are shown in Fig. 9. Compared with case 3, more DR
is used in case 1 to improve system security and help WP
absorption. For case 1, the total increment DR is 1479 MWh and
total decrement DR is 3873 MWh. For case 3, the total increment
DR is 1108 MWh and the total decrement DR is 3248 MWh. More
importantly, GC is the lowest for case 1, particularly the price spike
at 19 pm for case 1 is the lowest. But this phenomenon is not
obvious between cases 2 and 3. 

In addition, Fig. 10 compares RC and EENS for cases 1 and 2
under different line contingencies. Note that the branches are
numbered according to [39]. In most contingencies, RC and EENS
for case 1 are lower. However, there are no trends of EENS or RC
found across the studied contingencies. The highest RC for case 1
is $2032 for the outage of branch # 37, while for case 2 it is $3579
for the outage of branch # 31. 

Furthermore, to validate the robustness of a planning scheme to
the uncertainties of wind speed, load and DR bids, 64 validation
scenarios are generated based on the mean and the standard
deviation of the uncertainty parameters. Specifically, wind speed,
load and DR bid uncertainties are generated by the combination of
σ /E = 1%; 3%; 5%; 7% (i.e. 4 × 4 × 4 = 64 scenarios). A
robustness evaluation index (REI) is defined according to the
relative error of regrets [22]:

Robustness =
1

R
^ R

^
−

1
M

⋅ ∑
i = 1

M

Ri × 100% (44)

where Ri denotes the insecurity risk in scenario i, R^  denotes the risk
of the obtained solution, M is the total number of scenarios;
1/M ⋅ ∑i = 1

M
Ri is the average insecurity risk in the validation

scenarios. The practical meaning of REI indicates the closeness of

Fig. 7௒ Probability distributions of total GC and demand response cost
(DRC) on the 24-bus system

 
Table 3 Computational performance by running 50 times of
simulations on the IEEE 24-bus RTS system
Simulation time, s Aver. Std. Min. Max.
point estimation method 1348 16.21 1109 1784
MC simulation method 3594 36.97 3290 3899

 

Table 4 Planning schemes for cases 1–3
Case # Identified planning schemes
1 η1 − 3 = 1, η2 − 6 = 2, η11 − 13 = 2, η15 − 16 = 3, η15 − 21 = 1, η20 − 23 = 1

2 η1 − 3 = 1, η1 − 5 = 1, η3 − 9 = 2, η6 − 10 = 3, η11 − 13 = 1, η12 − 23 = 2

η15 − 16 = 2,η17 − 22 = 2,η19 − 20 = 1,η20 − 23 = 1

3 η1 − 3 = 1,η1 − 5 = 1,η4 − 9 = 2,η8 − 9 = 1,η11 − 14 = 2,η12 − 23 = 2,

η13 − 23 = 1,η14 − 16 = 3,η15 − 21 = 1,η17 − 18 = 2,η20 − 23 = 1,η21 − 22 = 2,

 

Fig. 8௒ Daily average WP output and curtailment
 

Fig. 9௒ Peak day GC and DR
 

Fig. 10௒ Insecurity RC and EENS for line contingencies
 

Fig. 11௒ Probability distributions of total GC and DRC on the 2383-bus
Polish system
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the insecurity risk obtained to that under stochastic variations. A
solution is said to be more robust, if the value of REI is smaller.

From Tables 5 and 6 we can see that REI for case 1 is the
lowest with 600 and 900 MW WP capacities (0.16 and 0.18%,
respectively). Besides, other results such as total cost, WPC, peak
demand, and total energy consumption are also the lowest for case
1. By contrast, results of WPC, peak demand and total energy
consumption are the highest for case 2 without the consideration of
DR. Moreover, the deterministic approach in case 3 results in the
highest total cost for the two WP penetration scenarios (815.65 and
998.71 M$). It is worth mentioning that with 600 MW WP, EENS
satisfies the criterion for all cases under N − 1. However, when WP
increases to 900 MW or when N − 2 conditions are considered,
only case 1 can still satisfy the reliability criterion. The
implications of these findings are: (i) if DR is optimally integrated
into the objective function, DR can be efficiently used to balance
WP outputs, reduce GC, defer capital investment, and improve
system security and reliability. (ii) The proposed approach can
better coordinate the dispatch of power generation and DR
resources and mitigate WPC, thus improving the overall economic
efficiency. (iii) Compared with the deterministic approach, the
proposed risk-averse approach is more robust to stochastic
variations and higher WP penetration. 

5.4 2383-bus polish system

The peak load of the studied 2383-bus Polish system is 24,558 
MW and the total generation capacity is 38,179 MW. We assume
that five WP are located at buses 64, 730, 1024, 1875 and 2204,
and they have an equal capacity at 500 MW (total WP capacity is
2500 MW). The three cases in Section 5.2 are also used.
Furthermore, to validate the robustness of a planning scheme to the
uncertainties of wind speed, load and DR bids, 125 validation
scenarios are generated based on the mean and the standard
deviation of the uncertainty parameters. Specifically, wind speed,
load and DR bid uncertainties are generated by the combination of
σ /E = 1%; 3%; 5%; 7%; 9% (i.e. 5 × 5 × 5 = 125 scenarios).

Fig. 11 illustrates the probability distributions of total GC and
DRC obtained by the point estimation and MC simulation methods.
The computational performances of the two methods are compared

in Table 7 by running 50 times of simulations. As seen in Fig. 11
and Table 7, compared with the MC simulation method, the point
estimation method can provide a satisfactory estimation, while
significantly reducing the computational burden (the average
simulation time is reduced from 13,567 to 4467 s). Based on the
results in Tables 3 and 7, we can conclude that the improvement in
terms of the computational performance using the point estimation
method is more evident on the bigger size network. 

Furthermore, the results of total cost, WPC, peak demand, total
energy, EENS and REI are compared for cases 1–3. The findings
are similar to those in Section 5.3. As seen in Table 8, compared
with the TEP model without DR (case 2) or the deterministic
security-constrained TEP model in the existing works (case 3), the
proposed approach (case 1) is superior. Specifically, the proposed
model requires the lowest cost, reduces the WP curtailment, peak
demand and total energy consumption, and improves the system
reliability. Also, the proposed approach is more robust to
uncertainties (the REI for case 1 is the lowest at 0.27%). 

6௑Conclusion
WP and DR programs play an important role in ensuring energy
sustainability and improving system efficiency. On the other hand,
the large-scale integration of WP and DR introduces increasing
uncertainties to TEP. This paper has proposed a risk-averse TEP
framework to address the insecurity risk in relation to future
uncertainties. The conventional deterministic security criterion is
replaced by a risk measure, which can capture the probabilistic
nature of system behaviours such as WP outputs, load variations,
DR bids and component availability. The formulated TEP objective
is comprised of line IC, power GC, DRC, insecurity RC. To
enhance the computational efficiency, an iterative algorithm based
on the Benders decomposition in conjunction with POPF is
employed and developed to solve the formulated TEP model. The
proposed risk-averse TEP approach is verified on the Garver's 6-
bus, IEEE 24-bus RTS and 2383-bus Polish systems and
comparative studies have been undertaken. According to the
simulation results, the impacts of WP and DR on system security
and adequacy can be effectively investigated. The proposed
approach can better coordinate the dispatch of power generation

Table 5 Result comparison for cases 1–3 with 600 MW WP capacity
Case# Total cost, M$ WPC, GWh Peak demand, MW Total energy, TWh EENS REI, %

N − 1, % N − 2, %
1 494.53 22.23 3910 12.48 0.0165 0.0189 0.16
2 652.36 85.70 4344 12.84 0.0198 0.0253 0.86
3 815.65 52.15 3918 12.52 0.0186 0.0206 0.39

 

Table 6 Result comparison for cases 1–3 with 900 MW WP capacity
Case# Total cost, M$ WPC, GWh Peak demand, MW Total energy, TWh EENS REI, %

N − 1, % N − 2, %
1 501.38 28.65 3910 12.52 0.0185 0.0198 0.18
2 752.36 95.32 4344 12.93 0.0295 0.0458 0.98
3 998.71 56.32 3918 12.59 0.0216 0.0321 0.65

 

Table 7 Computational performance by running 50 times of simulations on the 2383-bus Polish system
Simulation time, s Aver. Std. Min. Max.
point estimation method 4467 89.71 4095 4790
MC simulation method 13,567 234.98 13,098 14,032

 

Table 8 Result comparison for cases 1–3 with 2500 MW WP capacity on the 2383-bus Polish system
Case# Total cost, M$ WPC, GWh Peak demand, MW Total energy, TWh EENS REI, %

N − 1, % N − 2, %
1 4516.54 183.96 28,298 89.45 0.0172 0.0196 0.27
2 6789.38 436.04 31,343 98.43 0.0199 0.0287 0.95
3 8034.12 324.56 29,094 89.97 0.0192 0.0258 0.46
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and DR resources and mitigate WPC, thus improving the overall
economic efficiency. More importantly, the proposed risk-averse
approach is more robust to stochastic variations and higher WP
penetration. Therefore, network planners can use the proposed
approach to hedge against the future investment risks in relation to
uncertainties.
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