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Abstract—Advances in bilateral communication technology 
foster the improvement and development of Home Energy Man-
agement System (HEMS). This paper proposes a new HEMS to 
optimally schedule home energy resources (HERs) in a high roof-
top photovoltaic penetrated environment. The proposed HEMS 
includes three stages: forecasting, day-ahead scheduling, and actual 
operation.  In the forecasting stage, short-term forecasting is per-
formed to generate day-ahead forecasted photovoltaic solar power 
and home load profiles; in the day-ahead scheduling stage, a Peak-
to-Average Ratio (PAR) constrained coordinated HER scheduling 
model is proposed to minimize the 1-day home operation cost; in 
the actual operation stage, a Model Predictive Control (MPC) 
based operational strategy is proposed to correct HER operations 
with the update of real-time information, so as to minimize the de-
viation of actual and day-ahead scheduled net-power consumption 
of the house. An adaptive thermal comfort model is applied in the 
proposed HEMS to provide decision-support on the scheduling of 
the heating, ventilating, and air conditioning (HVAC) system of 
the house. The proposed approach is then validated based on Aus-
tralian real datasets. 
 

1Index Terms—Smart home, demand side management, de-
mand response, energy management system 

NOMENCLATURE 
2Sets and Indices 
a, Φ  Index and set of the controllable appliances; 
a′ , ICAΦ  Index and set of ICAs;  
a′′ , NICAΦ  Index and set of NICAs; 
Constants 

t∆  Duration of scheduling time interval (hour); 
T  Total number of scheduling time intervals; 
γ  Cost coefficient of the RBESS depreciation; 

,bess rateP  Rated power capacity of the RBESS (kW); 
,bess rateE  Rated energy capacity of the RBESS (kWh); 

ca
aP  Rated power of controllable appliance a 

(kW);  
,ca base

aP  Base power of controllable appliance a (kW); 
A  Area of the photovoltaic solar panel (m2); 

installC  Photovoltaic source installation fee paid by 
the user ($); 

GYN  Number of guarantee year of the photovoltaic 
source;  

σ  Photovoltaic Energy conversion efficiency; 
hvacP  Rated power of the HVAC (kW); 

,c dη η   Charging loss (%) and discharging loss fac-
tors (%/month) of the RBESS; 

lη   Leakage loss factor (%/month) of the RBESS; 
κ  Energy efficiency of the HVAC;  

( )pr t  Electricity price at time t ($/kWh); 
minSOC  Lower SOC limit of the BESS; 

 
 

maxSOC  Upper SOC limit of the BESS; 

( )L t  Forecasted total uncontrollable house load at 
time t (kW); 

( )pvP t  Forecasted photovoltaic solar power output at 
time t (kW); 

( )r t  Forecasted solar radiation at time t (J/m2); 

id  Required operation duration of the ith AOA 
(hour); 

χ  PAR threshold;  

min, min,,on off
i iτ τ    Minimum online and offline limits of ith ICA 

at t (hour); 
start
at , end

at  Start and end time of the allowable operation 
time rage of the CA a;  

,low uppψ ψ  Lower and upper APMV limits; 
Variables 

( )bessP t  Charging/discharging power of the RBESS at 
time t (kW); 

( )bessE t  Energy stored in the RBESS at time t (kWh); 

( )SOC t  SOC of the RBESS at time t;  

( )as t  Status of the CA a at time t: 0-OFF, 1-ON; 

( ), ( )on off
i it tτ τ  Accumulated online and offline durations of 

ith IAOA at t under scenarios o and u (hour);  
( )netL t  Net load of the house at time t (kW); 

  

I.  INTRODUCTION 

ITH the increasing penetration of information and com-
munication technology (ICT) associated with distributed 

energy sources (e.g., renewable source, energy storage system, 
distributed generation unit), modern buildings are becoming 
complex micro cyber-physical systems. In these scenarios, ex-
pert systems are capable of enhancing the energy efficiency of 
buildings and, in particular, Home Energy Management Sys-
tems (HEMSs) have attracted in recent years significant atten-
tion in both academia and industry.      
 With the aim of providing decision-support for residential us-
ers, HEMSs often automatically schedule Home Energy Re-
sources (HERs) to optimize energy consumption of 
houses/units. Different HEMSs can be developed for managing 
different kinds of HERs. Some HEMSs are developed to opti-
mally schedule thermostatically controlled appliances (e.g., our 
previous works [1-3]). Some researches coordinately schedule 
various controllable household appliances together with the re-
newable energy sources and energy storage devices. For exam-
ple, [4] proposed a scheduling model to optimally schedule the 
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operations of the household appliances under day-ahead fore-
casted real-time electricity pricings; [5] optimally scheduled a 
residential battery energy storage system (RBESS) and house-
hold appliances with solar power penetration; in [6], a load 
commitment framework was proposed to minimize the house-
hold operation costs. In [7], we proposed a multi-objective 
HEMS model by taking into account the renewable uncertain-
ties. In [8], a HEMS was designed to dynamically schedule ap-
pliances in each dwelling unit, and based on which the power 
demand of the whole community was forecasted and reported 
to the utility. Our recent work introduced the service computing 
technology into smart home and proposed the concept of “de-
mand side recommender system” [9-11], which can work in the 
manually operated home environment and recommend energy-
aware products/suggestions to the homeowner. Most of afore-
mentioned researches [1-8] focus on day-ahead scheduling of 
HERs. Only very limited works can be found addressing to gap 
between the forecasted and real-time data associated with the 
day-ahead and actual operation stages, respectively. Iwafune et 
al. [12] proposed a rule-based control strategy for actual opera-
tions of RBESS, by considering penetration of photovoltaic so-
lar power.  
 The major contribution of this paper is to propose a multi-
stage HEMS to coordinate day-ahead plan-making and actual 
operation. The proposed system significantly extends the work 
in [12] by considering the flexibility of controllable appliances 
and the heating, ventilating, and air conditioning (HVAC) sys-
tem. In the forecasting stage, we employ an artificial neural net-
work (ANN) based method for the day-ahead forecasting that 
relies on following three stochastic variables: solar radiation, 
ambient temperature, and must-run house load. Day-ahead fore-
casted data is then used as input to a proposed day-ahead HER 
scheduling model that accounts for the Peak-to-Average (PAR) 
ratio of the house consumption. In actual operation stage, a 
Model Predictive Control (MPC) based operation model is pro-
posed to reduce the negative impact of the day-ahead forecast-
ing error. Moreover, an Adaptive Thermal Comfort Model is 
introduced to provide decision-making support for the schedul-
ing of HVAC. For clarity, the schematic overview of the pro-
posed HEMS is summarized in Fig. 1. 

This paper is organized as follows. Section II presents the 
models of HERs managed by the HEMS; Section III introduces 
the day-ahead forecasting method; Sections IV and V present 
the proposed day-ahead and actual HER operation models, re-
spectively; the solution procedure is presented in Section VI; 
simulations are discussed in Section VII; and, finally, conclu-
sion and future work are provided in Section VIII.  

 

II.  HOME ENERGY RESOURCE MODELS 

A key step in the development of a HEMS is to establish 
suitable HER models and this section presents such models for 
a smart home environment.  

A.  Model of the Residential Battery Energy Storage System 
Energy charging and the state-of-charge (SOC) of the 

RBESS is formulated as follows:   

 
( +1) ( ) ( )

                  | ( ) | ( )

bess bess d bess

bess c bess l

E t E t t P t
P t t E t t

η

η η

= − ∆ ⋅ ⋅ −

⋅ ⋅ ∆ − ⋅ ⋅ ∆
     (1) 

                         ,( ) ( )bess bess rateSOC t E t E=                         (2) 

where negative and positive values of ( )bessP t  indicate dis-
charging and charging, respectively. Lifetime depreciation cost 
of the RBESS is calculated as follows:  

( )  + ( )bess bess l
bessC P t t E t tγ γ η= ⋅ ⋅ ∆ ⋅ ⋅ ⋅ ∆               (3) 

B.  Model of the Controllable Household Appliances 
Controllable appliances can be subdivided in two classes: in-

terruptible, controllable appliances (ICAs) and non-interrupti-
ble, controllable appliances (NICAs). ICAs refer to appliances 
whose operations can be interrupted and resumed later, such as 
clothes dryers and dish washers; NICAs refer to appliances 
whose operations are not allowed to be interrupted until they 
finish the work, e.g., coffee maker.  

In this study, we assume the controllable appliances con-
sume rated power ( ca

aP ) when they are running, and consume 
zero power when they are turned off. For an ICA, it is assumed 
that it consumes a base power when it is interrupted. For exam-
ple, a clothes dryer often includes a heating coil part and a mo-
tor part. When it is interrupted, the heating coil part stops work-
ing while the motor part continue running until the appliance is 
resumed. For convenience, we use ,ca base

aP  to denote the base 

power of appliance a. For NICA, the value of ,ca base
aP  is zero.  

C.  Model of Building Thermal Dynamics  
An adequate modelling of the building thermal dynamics is 

essential for an efficient HVAC scheduling. In this study, we 
employ the third-order state-space thermal dynamics model 
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widely used in the literature [13], [14]. This model considers 
the impact of ambient temperature and solar irradiance on the 
indoor temperature, and is expressed as follows: 

, 1 ,  j t j t tT A T B U+ = ⋅ + ⋅                              (4) 

     in
t tT C T= ⋅                                  (5) 

where [ , , ]in im om
t t t tT T T T ′=  is the state vector, in which in

tT is 

the indoor temperature at time t (°C); im
tT  is the temperature of 

the thermal accumulating layer in the inner walls and floor of 
the building at time t (°C);  om

tT  represents the temperature of 

the building envelop at time t (°C). [ , , ]amb hvac
t t tU T Pκ ′= Φ ⋅  is 

the input control vector, where amb
tT  is the ambient temperature 

and tΦ  is the solar irradiation at time t (kW/m2); and 
[1,0,0]C = . The building parameter matrices A and B can be 

calculated based on the inner walls and floor, and the thermal 
capacitances and resistances of the building.   

D.  Model of Human Indoor Thermal Comfort  
Existing HVAC scheduling works [13], [15] restrict the in-

door air temperature within a pre-specified comfort temperature 
band. However, in building environment science [16], people’s 
thermal comfort is often evaluated through thermal comfort 
models, by taking into account the indoor temperature, humid-
ity, clothing condition, etc. In previous work [2], [4], we inte-
grated the ISO 7730 thermal comfort model into the direct load 
control of HVAC systems. ISO 7730 model is a PMV-PPD 
thermal comfort model (i.e. Predicted Mean Vote - Percentage 
People Dissatisfied) proposed by Fanger [16], and has been 
standardized by the American Society of Heating, Refrigerating 
and Air-Conditioning Engineers (ASHARE).  

ISO 7730 model seeks to capture people’s responses to the 
thermal environment in terms of the physics and physiology of 
heat transfer. It assumes the human body as a passive recipient 
of outdoor thermal stimuli, rather than an active one interacting 
with the person-environment system via multiple feedback 
loops. However, in real buildings, if changes occur that produce 
discomfort, people often react in various ways to restore their 
comfort (e.g., putting on/taking off clothing and taking in 
hot/cold drinks) [17]. Based on this realization, adaptive ther-
mal comfort models have been developed, e.g. [17], to account 
for people’s reactions. In this study, this adaptive thermal com-
fort model presented in [17] is employed to evaluate the user’s 
indoor thermal comfort, which consequently affects the HVAC 
scheduling decisions. For a given indoor environment, the PMV 
value at time t ( ( )PMV t ) is calculated following [18]:  

( ) ( ) ( )in vPMV t a T t b P t c= ⋅ + ⋅ −                  (6) 
(16.6536 4030.183)/ ( ( ) 273)( ) ( ) 10 inT t

vP t rh t e − += ⋅ ⋅            (7) 
where ( )inT t  represents the indoor temperature at time t; ( )rh t  
and ( )vP t  represent the indoor relative humidity and vapor 
pressure in ambient air (mmHg), respectively; coefficients a , 

b , and c are determined by the user’s clothing condition ( clI ), 
and can be found in [16]. Based on this, the adaptive PMV at 

time t ( ( )APMV t ) is then calculated as:  
( ) ( ) / (1 ( ))APMV t PMV t PMV tλ= + ⋅                   (8) 

where λ  is the adaptive coefficient, representing effects of 
people’s reactions. In this study, the value of λ  is obtained 
from the Evaluation Standard for Indoor Thermal Environment 
in Civil Buildings of China [19], shown in table I.  

E.  Model of Photovoltaic Solar Power  
Power output from photovoltaic solar panel is related to solar 

radiation and surface area and energy conversion efficiency of 
the panel, expressed as: 

( ) ( )pvP t A r tσ= ⋅ ⋅                              (9) 
For a residential user, the daily discounted photovoltaic 

source investment cost is calculated by its installation fee paid 
by the user and the guarantee years provided by the utility: 

365
install

pv GY

C
C

N
=

⋅
                                (10) 

 

III.  FORECASTING METHODOLOGY OF HOME OPERATION 
ENVIRONMENT 

Due to the high volatility, residential load and solar power 
are difficult to be precisely forecasted, leading to non-ignorable 
risks associated with the decision making of home energy man-
agement. ANN has been widely used for forecasting of electric-
ity load, solar power, electricity price, etc. (e.g. our previous 
work [20], [21]) because of its excellent nonlinear regression 
capability. Typical structure of a feed forward ANN is shown 
in Fig. 2. Given dataset 1{( , )}N

i i i=x t with the inputs n
i ∈x R  and 

the outputs m
i ∈t R , the ANN with K hidden nodes and activa-

tion function φ (⋅) for approximating N samples can be repre-
sented as: 

1
( ) ( ), 1, ,

L

K j i i j i
i

f b j Nβ φ
=

= ⋅ +   =∑x a x            (11) 

 

TABLE I 
VALUE DETERMINATION OF ADAPTIVE COEFFICIENT (TRANSLATED FROM 

[19]) 
Climate Zone of Build-

ing 
Educational 
Buildings 

Residential buildings, 
shops, hotels, and offices 

Severe 
Cold Area 

0PMV ≥  0.21 0.24 
0PMV <  -0.29 -0.5 

Warm 
Area 

0PMV ≥  0.17 0.21 
0PMV <  -0.28 -0.49 

 

Input 
Layer

Hidden 
Layer

Output 
Layer

x t

 
Fig. 2.  The typical structure of artificial neural network.  
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where ia represents the weight vector linking the ith hidden 
node and the input nodes; iβ represents the weight vector link-
ing the ith hidden node and the output nodes; bi represents the 
threshold of the ith hidden node. Theoretically, parameters of 
NNs can be obtained by minimizing the following cost function:  

 

2

1 1
( )

N K

i i j i j
j i

C bβ φ
= =

 = ⋅ + − 
 

∑ ∑ a x t                  (12) 

The bootstrap technique [22] is utilized to improve the re-
gression accuracy. The inputs of the ANN based forecasting 
model vary with the forecasting target. For instance, for the day-
ahead solar power forecasting, the inputs include numerical 
weather prediction, historical solar power, etc. 

 

IV.  DAY-AHEAD SCHEDULING MODEL OF THE SMART HOME 

Based on the forecasted profiles of solar radiation, air tem-
perature, and house load, the day-ahead HER scheduling model 
is formulated to minimize the 1-day home operation cost:  

min da
grid pv bessF C C C= + +                      (13) 

where gridC  represents the cost of purchasing power from the 
grid, which depends on the home net load and the TOU pricing; 

pvC  represents the discounted daily photovoltaic solar power 

generation cost; bessC  denotes the RBESS depreciation cost. 

bessC  and pvC  are calculated as Eqs. (3) and (10), respectively. 

gridC  is calculated as Eqs. (14):  

1
( ) max( ( ),0)

T
net

grid
t

C pr t t L t
=

 = ∆ ⋅ ∑                (14) 

in which:  
,*( ) ( ) ( ) ( ) ( )net ca bess pv

a a
a

L t s t P L t P t P t
∈Φ

= + + −∑              (15) 

,*
,

        if ( ) 1
 if ( ) 0   

ca
ca a a

a ca base
a a

P s t
P

P s t
 === 

==
                         (16) 

Eqs. (14) and (15) represent the rated power and allowable 
SOC limit constraints; Eq. (16) ensures at the end of the day, 
the SOC of the RBESS must be larger than a pre-specified 
threshold (  desireSOC ), so as to make it continuously serve the 
house in the incoming day.  
 Model (13) is subjected to following constraints: 

(a) RBESS operational constraints.  
,( )       1:bess bess rateP t P t T≤ ∀ =                 (17) 

min max( )SOC SOC t SOC≤ ≤               (18) 

( )  desireSOC T SOC≥                      (19) 
 (b) Indoor thermal comfort constraint, which ensures the in-
door thermal comfort must be kept within a comfort range.    

( )      1:low uppAPMV t t Tψ ψ≤ ≤ ∀ =             (20) 
(c) CA operation time constraint specified by the home-

owner: 
( ) 0,    , ,start end

a a aa t t ts tt ∀ ∈ Φ < >=              (21) 
(d)  Operation cycle constraint that turns off the controllable 

appliance when the task is finished: 

 
1

( ( ) )    
T

a a
t

d as t t
=

⋅ Φ∆ ∀= ∈∑                        (22) 

(e) NICA operation constraint that ensures no interruptions 
of the NISA until its work is completed: 

 
*

*

/

( ) 1     
i i

i

t d t

a
NIC

t

A

t

s at
+ ∆

′′
=

′′∀ ∈ Φ=∑                (23) 

where *
it  represents the time interval when the ith NISA is first 

time to be turned on.  
(f) ICA minimum online/offline time constraints. For inter-

ruptible SAs, the minimum online and offline time constraint is 
applied to protect their mechanical devices： 

 min,

min,

( )     ( ) 0
      

( )     ( ) 1

on on
a i a ICA
off off
a i a

t s t
a

t s t
τ τ
τ τ

′ ′

′ ′

 ≥ == ′∀ ∈Φ ≥ ==
           (24) 

(g) PAR constraint. The PAR value of one-day operation of 
the house is maintained below a threshold:  

 1:

1

max ( )

( )

net

t T
PAR T

net

t

L t

L t T
χ=

=

Γ = ≤

∑
                      (25) 

V.  ACTUAL OPERATION MODEL OF THE SMART HOME 

By solving the day-ahead scheduling model (13), the HEMS 
can estimate the one-day house net consumption profile and 
submit it to the load aggregator or utility [8], and the latter can 
make operation plans based on this forecasted load information. 
Therefore, the actual house net-load would be desired to follow 
the day-ahead schedule. Due to the inevitable forecasting error 
of the day-ahead stage, in the actual operation stage, the HEMS 
needs to update the HER operation decisions to follow the day-
ahead schedule.  

MPC [23] provides an effective solution to reduce the impact 
of forecasting errors by repeatedly updating the control deci-
sions with the unfold of stochastic variables. MPC is not a spe-
cific control law, but is often defined as a control methodology 
characterized by following common steps: 

(i) System modeling. The system model behaviors are pre-
dicted over a future horizon, called the predictive window; 

(ii) Cost function definition. The closed-loop performance of 
the system model over the prediction window is specified; 

(iii) Cost function optimization. The cost function is opti-
mized as a function of the set of future control signals to be 
applied to the system model during the predictive window; 

(iv) Receding horizon strategy. Only the control signal of the 
first (or first several) time interval is applied to the real process. 
In the next time step, the predictive window moves forward 
with one time interval, and all the algorithms repeat. 

In this paper we propose a MPC based smart home actual 
operation strategy, depicted as Fig. 3. In each MPC round, sto-
chastic variables of the home environment are forecasted over 
the predictive window, and a cost function is solved base on the 
day-ahead plan. Unlike the day-ahead forecasting, the forecast-
ing in the MPC process occurs over a very short-term scale, and 
can thus be considered to be highly close to the actual value of 
stochastic variables. The cost function is defined to minimize 
the deviation of the actual and day-ahead forecasted net loads 
of the house:  
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( )2,

=

min ( ) ( )
st mpc

st

t T
act net act net

t t

F L t L t
+

= −∑                 (26) 

, ,* , ,( ) ( ) ( ) ( ) ( )net act act ca act bes act pv act
a a

a
L t s t P L t P t P t

∈Φ

= + + −∑         (27) 

where , ( )net actL t  represents the net load of the house in the ac-
tual operation stage; stt  represents the starting time interval of 
the current MPC round; mpcT  is the predictive window size. The 
physical meanings of variables , ( )net actL t , ( )rt

as t , ( )actL t , 
, ( )bes actP t , and , ( )pv actP t  are those already introduced for varia-

bles ( )netL t , ( )as t , ( )L t , ( )besP t , and ( )pvP t  in Eq. (15) with the 
additional superscript ‘act’ to denote that these new set of vari-
ables represent the actual values. The decision variables of 
model (26) include ( )act

as t  and , ( )bess actP t , and all constraints 
(17)-(24) are applied. Since the actual operation objective is to 
make the actual home net-load follow the day-ahead schedule, 
constraint (25) is not applied in the actual operation model.  
 

VI.  SOLVING APPROACH  

Models (13) and (26) are constrained, mixed-integer combi-
natorial optimization problems. Similarly to the unit commit-
ment problem, their computational complexities over a finite 
optimization horizon are often NP hard. In the literature, heu-
ristic algorithms are widely used to solve the HEMS model and 
obtain the global/near-global optimal solution in the high di-
mensional problem space [5], [6], [9]. In this paper, a new me-
taheuristic algorithm recently proposed by the authors, i.e., Nat-
ural Aggregation Algorithm (NAA) [24], [25], is employed to 
solve the proposed approach.  

A.  Brief Introduction of NAA 
One nature of the group-living animals (e.g, fishes, insects, 

etc.) is that they often aggregate as multiple groups to take over 
resources (e.g., shelters, food, etc.). Such aggregation is bene-
ficial for the swarm to share the resources, but the over-crowd 
of the group is disadvantageous for the swarm members. Biol-
ogists found the group-living animals have the intelligence to 
self-adaptively adjust the group sizes on multiple resource sites, 
to achieve the balance of the resource exploitation and explora-
tion [26]. NAA essentially mimics the group-living animals’ 
self-aggregation behaviors. It divides the whole population into 
multiple sub-populations, and uses a stochastic migration 
model to migrate the individuals among sub-populations. In 
each generation, local and global search strategies are applied 
to do the stochastic search in the problem space. More details 
of NAA can be found in [24]. NAA is designed to search for the 
global/near-global optimal solution in the high dimensional, 

nonlinear problem space. Such self-aggregation intelligence 
can well balance the exploitation and exploration in the search-
ing process, which is an important consideration in the evolu-
tionary computation domain. The experiment results in [24] 
also prove the superior performance of NAA on a range of 
benchmark nonlinear functions.  

B.   Workflow of NAA-Based Solving Approach 
By applying NAA, in the day-ahead scheduling and actual 

operation models, each individual is encoded as a vector with 
( 2) TΦ + ⋅  and ( 2) mpcTΦ + ⋅  dimensions, respectively, repre-
senting a potential day-ahead plan and MPC decision scheme, 
respectively. Every 2Φ +  dimensions represent states of con-
trollable appliances and HVAC (binary variables), and the 
charging/discharging power of the RBESS (continuous varia-
bles). The overall workflow of the HEMS is illustrated in Fig. 
4. In the day-ahead forecasting stage, the values of stochastic 
variables are forecasted by the ANN and inputted into the day-
ahead scheduling model. By applying NAA, the day-ahead 
scheduling decisions are generated, from which the house net-
load profile is obtained. The house net-load profile is then in-
cluded into the actual operation model, where the MPC sched-
uler uses NAA to solve the model and generates the actual con-
trol plan, based on the updated HER states and the realization 
of the stochastic variables.  

VII.  SIMULATION STUDY 

Simulations are conducted to validate the proposed HEMS. 
All programs are implemented in Matlab and executed on a 
DELL PC with 128-G memory and two Intel Xeon processors.   

A.  Smart Home Environment Setup 
The simulation is setup to describe a smart home environ-

ment in a typical summer working day. For this purpose, six 
controllable appliances are simulated: a pool pump (PP), dish 
washer (DW), rice cooker (RC), washing machine (WM), 
clothes dryer (CD), and vacuum robot (VR). The VR needs to 
be fully charged before a user-specified time point. Operations 
of the CD, VR charging, and PP are assumed to be interrupted, 
and those of the RC, WM, and DW are assumed to be non-in-
terrupted. We obtain typical parameter values of the residential 
building from [13]. Table II shows the configuration of the 
home environment. 
Day-ahead forecasting of solar radiation, outdoor air tempera-
ture, and house load are performed based on the 1-year solar 
radiation and air temperature data recorded in New South Wales 
(NSW, Australia), and residential load data published by the 
“Smart Grid, Smart City” project [27], respectively. The TOU 
tariff used in the simulations is reported by the Energy Australia 
[5], shown in table III. Installation fee and guarantee years of 
the rooftop photovoltaic solar panel are set to $6,220 and 25 
years, respectively, according to the Australian residential solar 
business market survey [28].  The time interval is set to 15 
minutes, and the scheduling period is assumed to be 24 hours, 
starting from 7am, when the homeowner starts his/her one-day 
life. For actual operation, the MPC window is set to be 4 hours, 
and the actual data of solar radiation, air temperature, and house 
load are applied.  

Cost function 
optimization

Very short-term 
prediction of home 
stochastic variables

Day-ahead 
plan

HER Models

HER control 
decisions Home operation 

state update
Operation 

results 

Realization of 
stochastic variables

MPC

Fig. 3. Schematic of the MPC process 
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Control parameter settings of NAA are given in table IV. 
NAA includes six parameters [24] and these control, in groups 
of two, the individual migration, located search, and general-
ized search, respectively. For day-ahead scheduling, the time is 
relatively sufficient to accomplish the optimization (24-hour 
ahead), therefore popN  and maxG are set as larger values, and 
the control parameters are set to encourage a wider global ex-
ploration; for the actual operation, the optimization needs to ac-
complish in one time interval (i.e., 15 minutes in this simula-
tion), therefore popN and maxG  are set as small values, and the 
control parameters are set to encourage the fast convergence 
[24].  

B.  Day-Ahead Forecasting Results 
Figs. 5-7 show the real and forecasted profiles of the house 

load, solar power, and outdoor air temperature, respectively, 
produced by the ANN based forecasting method.  

C.  Day-Ahead RER Scheduling Results 
Based on the forecasted information, the day-ahead scheduling 
is performed. Fig. 8 shows the final scheduled house net load 
profile. The electricity tariff is also plotted. It shows that the 
HERs are well scheduled to shift the peak house consumptions 
from the peak pricing to low pricing periods. The house net-
load profile will be then used as the baseline for the actual op-
eration.  

Fig. 9 shows the day-ahead scheduled house consumption 
profile and the forecasted residential photovoltaic solar power 
profile. The house consumption is properly scheduled to show 
a desired shape and is consistent with the solar power distribu- 

 

TABLE II 
CONFIGURATIONS OF THE SMART HOME ENVIRONMENT  

Controllable Appliance Settings 
Name OD OTR ca

aP  ,ca base
aP  

PP 4 hours [9am, 6pm] 1.5 kW 0.1kW 
DW 1.5 hours [9am, 10pm] 2.4 kW 0.2kW 
WM 1.5 hours [11pm, 7am] 0.9 kW 0kW 
RC 0.75 hour [5pm, 7pm] 0.6 kW 0kW 
CD 2 hours [9am, 6:30pm] 2.5 kW 0.2kW 
VR 2 hours [9am, 6pm] 0.7kW 0.1kW 

RBESS Settings 
Power Capacity Energy Capacity  desireSOC  

3kW 12kWh 30% 
SOC Lower Limit SOC Upper Limit γ  

10% 90% 0.1 
HVAC Settings  

Operation Time Range lowψ   uppψ  
[7-8:30am], [6-10pm] -1 1 

Rated Power κ  - 
3kW 2.5 - 

Homeowner’s Clothing Settings 
Time Range Icl Clothing Condition 
[7am, 10pm] 0.7  Short sleeve shirt, light trousers, shoes 
[10pm, 7am] 0.3 Underwear, T-shirt 

Note: ‘OC’ means ‘operation duration; ‘OTR’ means ‘operation time ranges’; 
clothing insulation value (Icl) are obtained from [16].   
 

TABLE III 
ELECTRICITY TARIFF STRUCTURE 

Time-of-Use  Rate ($/kWh) 
Peak: 2pm-8pm 0.3564 

Shoulder: 7am-2pm, 8pm-10pm 0.1408 
Off-peak: 10pm-7am 0.0814 
Critical Peak Price Rate ($/kWh) 

5pm-8pm 2.000 
 

TABLE IV 
CONTROL PARAMETER SETTINGS OF NAA 

 Parameter 
Name Meaning Day-Ahead 

Model 
Real-Time 

Model 

Overall 
Control 

popN  Population size 200 60 
maxG  Maximum gener-

ation time 800 300 

Sub-Popula-
tion Control 

SN  Number of shel-
ters 10 4 

SCp  Shelter capacity 20 15 

Located 
Search Con-

trol 

δ  Scaling factor 1 1 

localCr  Located crosso-
ver factor 0.6 0.8 

Generalized 
Search Con-

trol 

α  Movement Am-
plification 1.5 1.2 

globalCr  Generalized 
crossover factor 0.3 0.1 

 

 
-tion. In this manner, the house is scheduled to consume more 
power in the period with sufficient solar power (i.e., about 9am-
3pm), and vice versa. This indicates the house is scheduled to 
be supplied by local energy sources, in which case the power 
purchase from the grid is significantly reduced. 

D.  Real-Time HER Scheduling Results 
After the day-ahead scheduling, MPC is applied in the actual 
operation stage to update the control actions of HERs, so as to 
make the actual house net-load follow the day-ahead plan. We 
set the control window to be 3 hours (12 time intervals), and 
proceed the MPC process until end of the whole horizon is re- 

Start System model 
configurations

Smart home historical 
data collection Predictor

Forecasted house 
load

Forecasted solar 
power output Forecasted RTP Forecasted outdoor 

air temperature

Initialize population

Individual migration

Located & 
generalized searches 

Constraint handling of 
day-ahead scheduling 

model 

Objective evaluation of 
day-ahead scheduling 

model

House net-load 
profile

Constraint handling of 
day-ahead scheduling 

model 

House load

Objective evaluation of 
day-ahead scheduling 

model

Termination 
condition satisfied?

System state updateControl horizon proceed

Reach the end of 
whole horizon?

End

YES
YES

NO

NO

Solar power

TOU temperature

MPC forecasting update

Day-Ahead Forecasting

NAA Evolution Day-Ahead Scheduling

Real-Time Operation

Control parameter 
setting

Individual selection

MPC scheduling 
results

Final operation 
results

 
Fig. 4 Workflow of the HEMS 
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-ached. Fig. 10 shows the day-ahead and actual house net- load 
profiles. It can be seen that by applying MPC to on-line update 
the HER control decisions, the actual house net-load can gener-
ally follow the day-ahead plan, with only minor deviations. This 
result is compared with a base case, in which the day-ahead 
HER scheduling plan is strictly executed without any correc-
tions. The result of the base case is shown in Fig. 10. It can be 
clearly seen that when there is no control action update for 
HERs, there is significantly larger deviations between the day-    

 

 
ahead and actual house net-load deviations, which are incurred 
by the forecasting errors.  

Fig. 11 shows the HER scheduling decisions under day-
ahead and real-time stages, respectively, with the MPC control 
window set as four hours. In actual operation stage, HER oper-
ation plans are updated with the realization of stochastic varia-
bles. The HVAC is controlled to maintain the indoor thermal 
comfort degree within the allowable range; the actual operation 
time ranges of controllable appliances are slightly different with 
the day-ahead plans, so as to minimize the day-ahead actual 
house net-loads. The actual operation of the RBESS shows a 
significantly larger deviation with the day-ahead plan, so as to 
compensate for the forecasting errors. Table V reports some nu-
merical home operation results. It clearly shows that with MPC 
the actual operation results are much closer to the day-ahead 
plan than the results calculated for the case where day-ahead 
decisions are strictly executed without MPC corrections. 
Fig. 12 shows the total deviation between the day-ahead plan 
and actual operation under different control window settings. 
With the increase of control window size, the deviation of day-
ahead and actual operation is reduced. However, in practical 
situations, excessively large control windows would also yield 
unneglectable MPC forecasting errors. Therefore, the choice of 
control window depends on different implementation consider-
ations.  
 The MPC based actual HER scheduling is further evaluated 
by comparing the following two scenarios: (1) by considering 
the solar power forecasting error, and (2) by assuming that there 
is no solar power forecasting error, i.e. representing the case of 
“perfect forecasting”. The actual HER scheduling is executed 
under these two case scenarios with the same parameter setting 

 
Fig. 5 Actual and forecasted house load 
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Fig. 6 Actual and forecasted solar power 
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Fig. 7 Actual and forecasted air temperature 
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Fig. 8 Day-ahead scheduled house net-load profile 
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Fig. 9 Day-ahead scheduled house consumption and forecasted residential 
photovoltaic solar power output 
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Fig. 10 Day-ahead and actual house net-load profiles  
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TABLE V 

Numerical Home Operation Results 

Item Day-Ahead 
Plan 

Operation with 
MPC 

Operation with-
out MPC 

Electricity Purchase Cost $0.82 $0.97 $1.65 
RBESS Operation Cost $0.80 $1.15 $0.80 
Discounted Daily Solar 

Generation Cost $0.66 $0.66 $0.66 
Total Cost $2.28 $2.78 $3.11 

Net-Load Deviation 0.0 0.92kW 4.0kW 
PAR 0.11 0.09 0.07 

 

 

 
introduced earlier. The scheduled net-load profiles are shown in 
Fig. 13. The total net-load deviation (calculated with Eq. (26)) 
for the MPC process with forecasting errors is 0.92 kW and this 
reduces to 0.79 kW for the “perfect forecasting” case. In the lat-
ter scenario, the final house net-load profile can  better follow 

 
the desired house net-load profile generated by the day-ahead 
scheduling. However, even if there is no solar forecasting error, 
there are still some deviations (0.79kW in total) between the 
day-ahead scheduling and actual operation results. This is be-
cause the day-ahead scheduling performs a global optimization 
over the whole day period (24 hours), while the MPC process 
runs a local optimization that covers a limited horizon (4 hours 
in this simulation) in each round. The calculated results show 
that when considering the solar forecasting error, the total net-
load deviation is only 0.13kW larger than the perfect forecast-
ing case, indicating the satisfactory real-time correction capa-
bility of the MPC.   

E.  Algorithm Validation  
The efficiency of NAA on the proposed HEMS is validated 

by comparing NAA with two commonly used heuristic optimi-
zation algorithm: Differential Evolution (DE) and Particle 
Swarm Optimization (PSO). The population size and maximum 
iteration time of the three algorithms are set to be the same with 
table IV. Control parameter values of DE and PSO are deter-
mined by several trials: For DE, F=0.8 and Cr=0.1; for PSO, 
w=0.8, Cp=1.5, Cg=1.5. For fair comparison purpose, five opti-
mization trials are performed by each algorithm, and the aver-
age result is taken for comparison. Convergence curves of the 
three algorithms on solving model (13) is shown in Fig. 14. 
From Fig. 14, it can be seen that PSO performs worst, while DE 

 

 
Fig. 11 HER operation decisions: (1) upper-left: indoor temperature and APMV profiles under day-ahead plan; (2) upper-middle: SOC and charging/discharging 
power of RBESS under day-ahead plan; (3) upper-right: CA operation time ranges under day-ahead plan; (4) lower-left: indoor temperature and APMV profiles 
under actual operation; (5) lower-middle: SOC and charging/discharging power of RBESS under actual operation; (3) lower-right: CA operation time ranges 
under actual operation; 
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Fig. 12 Impact of the MPC control window size 
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Fig. 13 House net-load profiles of MPC-based real-time operation with and 
without forecasting errors 
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Fig. 14 Algorithm efficiency comparison  
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shows good search performance in the early iterations, but al-
most stops to improve the searching after around 600 iterations. 
NAA significantly outperforms PSO, and also shows stronger 
searching performance than DE during the whole iteration pe-
riod. This observation is consistent with the experiments on 
benchmark functions reported in [24]. 

  

VIII.  CONCLUSION AND FUTURE WORK 

This paper proposes a three-stage HEMS in a high photovol-
taic penetrated home environment. In the first stage, ANN is 
applied to forecast the stochastic variables of the smart home; 
in the second stage, a day-ahead RER scheduling model is pro-
posed to optimize the day-ahead plan while accounting for the 
PAR index; in the third stage, a MPC based actual operation 
model is proposed to update the control decisions based on the 
realization of the stochastic variables. With this approach, the 
APMV model is applied for the HVAC control, and the NAA 
algorithm is used to solve the proposed models. Simulations 
show that the proposed system can well coordinate the day-
ahead and actual operations of the smart home. 

The authors are currently developing stochastic program-
ming based HEMS by considering the vehicle-to-home (V2H) 
technology and probabilistic characteristics of residential re-
newable energy.  
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